use crate::pipelines::{Drawcall, LineShader}; use crate::pipelines::DefaultShader; use std::sync::Arc; use std::time::SystemTime; use cgmath::{Matrix4, SquareMatrix}; use image::{ImageBuffer, ImageFormat, Rgb, Rgba}; use image::buffer::ConvertBuffer; use vulkano::{command_buffer::CommandBuffer, buffer::{BufferUsage, CpuAccessibleBuffer}, image::{ImageLayout, MipmapsCount}}; use vulkano::command_buffer::{AutoCommandBuffer, AutoCommandBufferBuilder, DynamicState}; use vulkano::descriptor::DescriptorSet; use vulkano::device::{Device, DeviceExtensions, Queue}; use vulkano::format::{ClearValue, Format}; use vulkano::framebuffer::{Framebuffer, FramebufferAbstract, RenderPassAbstract}; use vulkano::image::{AttachmentImage, Dimensions, ImageUsage, ImmutableImage, SwapchainImage, ImageViewAccess}; use vulkano::instance::{ApplicationInfo, Instance, InstanceExtensions, PhysicalDevice, Version}; use vulkano::instance::debug::{DebugCallback, MessageSeverity, MessageType}; use vulkano::pipeline::viewport::Viewport; use vulkano::sampler::{Filter, MipmapMode, Sampler, SamplerAddressMode}; use vulkano::swapchain::{AcquireError, ColorSpace, FullscreenExclusive, PresentMode, Surface, SurfaceTransform, Swapchain, SwapchainCreationError}; use vulkano::swapchain; use vulkano::sync::{FlushError, GpuFuture}; use vulkano::sync; use vulkano_win::VkSurfaceBuild; use winit::event::{Event, WindowEvent}; use winit::event_loop::{ControlFlow, EventLoop}; use winit::window::{Window, WindowBuilder}; use crate::pipelines::{line_vs::ty::LinePushConstants}; use crate::pipelines::vs::ty::PushConstants; use crate::pipelines::vs; use crate::{gameobject::{GameObject, GameObjectHandle}}; use crate::mesh::CPUMesh; use crate::config::RenderConfig; const VALIDATION_LAYERS: &[&str] = &[ "VK_LAYER_KHRONOS_validation" ]; #[derive(Default, Debug, Clone)] pub struct Vertex { pub position: [f32; 3], pub uv: [f32; 2], pub normal: [f32; 3], pub tangent: [f32; 4], pub bone_index: [i32; 4], pub bone_weight: [f32; 4], } vulkano::impl_vertex!(Vertex, position, uv, normal, tangent, bone_index, bone_weight); #[derive(Default, Debug, Clone)] pub struct LinePoint { pub position: [f32; 3], } vulkano::impl_vertex!(LinePoint, position); pub trait Game { /// Returns true if event should be ignored by the vulkan handler fn on_window_event(self: &mut Self, event: &Event<()>); fn update(self: &mut Self, renderer: &mut VulkanRenderer) -> vs::ty::ObjectUniformData; } pub struct Mesh { pub vertex_buffer: Arc>, pub index_buffer: Arc>, } #[derive(Debug, Copy, Clone)] pub struct MeshHandle { pub index: usize, pub diffuse_handle: TextureHandle, pub normal_handle: TextureHandle, } pub(crate) type TextureHandle = usize; pub struct GameData { pub start_time: SystemTime, pub line_vertices: Vec, pub push_constants: PushConstants, pub line_push_constants: LinePushConstants, pub recreate_pipeline: bool, pub dimensions: [u32; 2], pub shutdown: bool, pub game_objects: Vec, pub meshes: Vec, pub textures: Vec>>, pub use_line_pipeline: bool, } pub(crate) type RendererDescriptorSets = dyn DescriptorSet + Send + Sync; pub struct VulkanRenderer { pub game_data: GameData, pub device: Arc, pub framebuffers: Vec>, pub sampler: Arc, pub dynamic_state: DynamicState, pub pipelines: Vec>, pub surface: Arc>, pub swapchain: Arc>, pub render_pass: Arc, pub queue: Arc, pub recreate_swapchain: bool, pub debug_callback: Option, pub previous_frame_end: Option>, pub uniform_buffers: Vec>>, pub msaa_sample_count: u32, } impl VulkanRenderer { pub fn init(line_vertices: Vec, enable_validation_layers: bool, render_config: RenderConfig) -> (VulkanRenderer, EventLoop<()>) { // Create empty game data struct to be filled let mut data = GameData { push_constants: PushConstants { model: Matrix4::identity().into(), }, line_push_constants: LinePushConstants { model: Matrix4::identity().into(), view: Matrix4::identity().into(), projection: Matrix4::identity().into(), }, start_time: SystemTime::now(), recreate_pipeline: false, shutdown: false, line_vertices, dimensions: [0, 0], meshes: vec![], game_objects: vec![], textures: vec![], use_line_pipeline: true, }; // Create basic vulkan instance with layers and info let instance = { let extensions = InstanceExtensions { ext_debug_utils: true, ..vulkano_win::required_extensions() }; let app_info = ApplicationInfo { application_name: Some("Asuro's Editor".into()), application_version: Some(Version { major: 0, minor: 1, patch: 0 }), engine_name: Some("Asuro's Rust Engine".into()), engine_version: Some(Version { major: 0, minor: 1, patch: 0 }) }; if enable_validation_layers { println!("Enabling validation layers..."); let available_layers = vulkano::instance::layers_list().unwrap().map(|layer| String::from(layer.name())).collect::>(); println!("Available layers: {:?}", available_layers); VALIDATION_LAYERS.iter().for_each(|wanted_layer_name| { if !available_layers.iter().any(|available_layer_name| available_layer_name == wanted_layer_name) { panic!("Validation layer not found: {:?}", wanted_layer_name); } }); Instance::new(Some(&app_info), &extensions, VALIDATION_LAYERS.iter().cloned()).expect("failed to create Vulkan instance") } else { Instance::new(Some(&app_info), &extensions, None).expect("failed to create Vulkan instance") } }; // lifetime of this is important, even tho it isn't used! let mut debug_callback = None; // Debug stuff if enable_validation_layers { let msg_severity = MessageSeverity { verbose: false, information: true, warning: true, error: true }; let msg_types = MessageType { general: true, performance: true, validation: true }; debug_callback = DebugCallback::new(&instance, msg_severity, msg_types, |msg| { let type_str = match (msg.severity.error, msg.severity.warning, msg.severity.information, msg.severity.verbose) { (true, _, _, _) => "!!", (_, true, _, _) => "!", (_, _, _, true) => "i", _ => " " }; let layer_str = msg.layer_prefix; println!("[{}][{}]: {}", type_str, layer_str, msg.description); }).ok(); } // TODO: Just get the first physical device we find, it's fiiiine... let physical = PhysicalDevice::enumerate(&instance).next().unwrap(); println!("Using device: {} (type: {:?})", physical.name(), physical.ty()); let events_loop = EventLoop::new(); let surface = WindowBuilder::new().build_vk_surface(&events_loop, instance.clone()).unwrap(); let window = surface.window(); // TODO: Tutorial says we need more queues // In a real-life application, we would probably use at least a graphics queue and a transfers // queue to handle data transfers in parallel. In this example we only use one queue. let queue_family = physical.queue_families().find(|&q| { q.supports_graphics() && surface.is_supported(q).unwrap_or(false) }).unwrap(); // Queue let device_ext = DeviceExtensions { khr_swapchain: true, ..DeviceExtensions::none() }; let (device, mut queues) = Device::new(physical, physical.supported_features(), &device_ext, [(queue_family, 0.5)].iter().cloned()).unwrap(); let queue = queues.next().unwrap(); // Swapchain let (swapchain, images) = { let caps = surface.capabilities(physical).unwrap(); let usage = caps.supported_usage_flags; let alpha = caps.supported_composite_alpha.iter().next().unwrap(); let format = caps.supported_formats[0].0; let inner_size = window.inner_size(); data.dimensions = [inner_size.width, inner_size.height]; Swapchain::new(device.clone(), surface.clone(), caps.min_image_count, format, data.dimensions, 1, usage, &queue, SurfaceTransform::Identity, alpha, PresentMode::Fifo, FullscreenExclusive::Default, true, ColorSpace::SrgbNonLinear).unwrap() }; // Render pass let render_pass = Arc::new(vulkano::single_pass_renderpass!( device.clone(), attachments: { color: { load: DontCare, store: Store, format: swapchain.format(), samples: 1, }, intermediary: { load: Clear, store: DontCare, format: swapchain.format(), samples: render_config.msaa_samples, }, depth: { load: Clear, store: Store, format: Format::D16Unorm, samples: render_config.msaa_samples, initial_layout: ImageLayout::Undefined, final_layout: ImageLayout::DepthStencilAttachmentOptimal, } }, pass: { color: [intermediary], depth_stencil: {depth}, resolve: [color] } ).unwrap()); let sampler = Sampler::new(device.clone(), Filter::Linear, Filter::Linear, MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap(); let line_vertex_buffer = CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::vertex_buffer(), false, data.line_vertices.iter().cloned()).unwrap(); let pipelines: Vec> = vec![ Box::new(DefaultShader::new(device.clone(), render_pass.clone())), Box::new(LineShader::new(device.clone(), render_pass.clone(), line_vertex_buffer)), ]; let default_tex = { let image = image::load_from_memory_with_format(include_bytes!("../models/missing-texture.jpg"), ImageFormat::Jpeg).unwrap().to_rgba8(); let image_data = image.into_raw().clone(); let (image_view, future) = ImmutableImage::from_iter( image_data.iter().cloned(), Dimensions::Dim2d { width: 128, height: 128 }, Format::R8G8B8A8Unorm, queue.clone(), ).unwrap(); future.flush().unwrap(); image_view }; // Dynamic viewports allow us to recreate just the viewport when the window is resized // Otherwise we would have to recreate the whole pipeline. let mut dynamic_state = DynamicState { line_width: None, viewports: None, scissors: None, compare_mask: None, write_mask: None, reference: None }; let msaa_attachments = Self::create_msaa_buffers(device.clone(), data.dimensions, &swapchain, render_config.msaa_samples); // The render pass we created above only describes the layout of our framebuffers. Before we // can draw we also need to create the actual framebuffers. let framebuffers = window_size_dependent_setup(device.clone(), &images, &msaa_attachments, render_config.msaa_samples, render_pass.clone(), &mut dynamic_state); let mut uniform_buffers = Vec::new(); let uniform_buffer = vs::ty::ObjectUniformData { view: Matrix4::identity().into(), projection: Matrix4::identity().into(), time: 0.0, light_position: [0.0, 0.0, 0.0], camera_position: [0.0, 0.0, 0.0], _dummy0: [0; 12], _dummy1: [0; 4], }; for _ in 0..swapchain.num_images() { uniform_buffers.push(CpuAccessibleBuffer::from_data( device.clone(), BufferUsage::uniform_buffer_transfer_destination(), false, uniform_buffer, ).unwrap()); } data.textures.push(default_tex); // In the loop below we are going to submit commands to the GPU. Submitting a command produces // an object that implements the `GpuFuture` trait, which holds the resources for as long as // they are in use by the GPU. // // Destroying the `GpuFuture` blocks until the GPU is finished executing it. In order to avoid // that, we store the submission of the previous frame here. let previous_frame_end = Some(Box::new(sync::now(device.clone())) as Box); (VulkanRenderer { game_data: data, device, framebuffers, sampler, dynamic_state, pipelines, uniform_buffers, surface, swapchain, render_pass, queue, recreate_swapchain: false, debug_callback, previous_frame_end, msaa_sample_count: render_config.msaa_samples }, events_loop) } fn create_command_buffer(self: &mut Self, fb_index: usize, uniform_buffer_data: vs::ty::ObjectUniformData) -> Arc { // General setup let mut builder = AutoCommandBufferBuilder::primary_simultaneous_use(self.device.clone(), self.queue.family()).unwrap(); builder.update_buffer(self.uniform_buffers[fb_index].clone(), uniform_buffer_data).unwrap(); builder.begin_render_pass(self.framebuffers[fb_index].clone(), false, vec![ClearValue::None, ClearValue::Float([0.0, 0.0, 0.0, 1.0]), ClearValue::Depth(1.0)]).unwrap(); // Draw meshes etc. for pipeline in &self.pipelines { pipeline.draw(&mut builder, fb_index, &self.game_data, &self.dynamic_state); } // General cleanup builder.end_render_pass().unwrap(); Arc::new(builder.build().unwrap()) } fn create_msaa_buffers(device: Arc, dimensions: [u32; 2], swapchain: &Arc>, sample_count: u32) -> Vec> { let mut msaa_attachments = vec![]; for _ in 0..swapchain.num_images() { msaa_attachments.push(AttachmentImage::transient_multisampled(device.clone(), dimensions, sample_count, swapchain.format()).unwrap()); } msaa_attachments } pub fn render_loop(self: &mut Self, new_ubo: vs::ty::ObjectUniformData) { // cleanup previous frame self.previous_frame_end.as_mut().unwrap().cleanup_finished(); // recreate swapchain if window size changed if self.recreate_swapchain { let window = self.surface.window(); let inner_size = window.inner_size(); self.game_data.dimensions = [inner_size.width, inner_size.height]; let (new_swapchain, new_images) = match self.swapchain.recreate_with_dimensions(self.game_data.dimensions) { Ok(r) => r, // This error tends to happen when the user is manually resizing the window. // Simply restarting the loop is the easiest way to fix this issue. Err(SwapchainCreationError::UnsupportedDimensions) => { println!("Swapchain rejected: UnsupportedDimensions"); return; } Err(err) => panic!("{:?}", err), }; let msaa_buffers = Self::create_msaa_buffers(self.device.clone(), self.game_data.dimensions, &new_swapchain, self.msaa_sample_count); self.swapchain = new_swapchain; // Because framebuffers contains an Arc on the old swapchain, we need to // recreate framebuffers as well. self.framebuffers = window_size_dependent_setup(self.device.clone(), &new_images, &msaa_buffers, self.msaa_sample_count, self.render_pass.clone(), &mut self.dynamic_state); self.recreate_swapchain = false; } // recreate pipeline if requested if self.game_data.recreate_pipeline { let device = self.device.clone(); let render_pass = self.render_pass.clone(); self.pipelines.iter_mut().for_each(|pipeline| pipeline.recreate_pipeline(device.clone(), render_pass.clone())); self.game_data.recreate_pipeline = false; } // Before we can draw on the output, we have to *acquire* an image from the swapchain. If // no image is available (which happens if you submit draw commands too quickly), then the // function will block. // This operation returns the index of the image that we are allowed to draw upon. // // This function can block if no image is available. The parameter is an optional timeout // after which the function call will return an error. let (fb_index, _, acquire_future) = match swapchain::acquire_next_image(self.swapchain.clone(), None) { Ok(r) => r, Err(AcquireError::OutOfDate) => { self.recreate_swapchain = true; return; }, Err(err) => panic!("{:?}", err) }; let command_buffer = self.create_command_buffer(fb_index, new_ubo).clone(); let future = self.previous_frame_end.take().unwrap() .join(acquire_future) .then_execute(self.queue.clone(), command_buffer).unwrap() .then_swapchain_present(self.queue.clone(), self.swapchain.clone(), fb_index) .then_signal_fence_and_flush(); match future { Ok(future) => { // we're joining on the previous future but the CPU is running faster than the GPU so // eventually it stutters, and jumps ahead to the newer frames. // // See vulkano issue 1135: https://github.com/vulkano-rs/vulkano/issues/1135 // This makes sure the CPU stays in sync with the GPU in situations when the CPU is // running "too fast" #[cfg(target_os = "macos")] future.wait(None).unwrap(); self.previous_frame_end = Some(Box::new(future) as Box<_>); }, Err(FlushError::OutOfDate) => { println!("Swapchain out of date!"); self.recreate_swapchain = true; self.previous_frame_end = Some(Box::new(sync::now(self.device.clone())) as Box<_>); } Err(e) => { println!("{:?}", e); self.previous_frame_end = Some(Box::new(sync::now(self.device.clone())) as Box<_>); } }; } pub fn upload_mesh(self: &mut Self, mesh: CPUMesh) -> usize { let vertex_buffer = CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::vertex_buffer(), false, mesh.vertices.into_iter()).unwrap(); let index_buffer = CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::index_buffer(), false, mesh.indices.into_iter()).unwrap(); self.game_data.meshes.push(Mesh { vertex_buffer, index_buffer }); self.game_data.meshes.len() - 1 } pub fn upload_texture(self: &mut Self, texture_data: &gltf::image::Data) { // Format buffer on cpu for upload let buffer: ImageBuffer, Vec> = image::ImageBuffer::from_raw(texture_data.width, texture_data.height, texture_data.pixels.clone()).unwrap(); let new_buffer: ImageBuffer, Vec> = buffer.convert(); let dimensions = Dimensions::Dim2d { width: texture_data.width, height: texture_data.height }; let source = CpuAccessibleBuffer::from_iter( self.device.clone(), BufferUsage::transfer_source(), false, new_buffer.iter().cloned(), ).unwrap(); // Create image let (image_view, init) = ImmutableImage::uninitialized( self.device.clone(), dimensions, Format::R8G8B8A8Unorm, MipmapsCount::Log2, ImageUsage { transfer_source: true, transfer_destination: true, sampled: true, ..ImageUsage::none() }, ImageLayout::ShaderReadOnlyOptimal, self.device.active_queue_families() ).unwrap(); // Upload image data let mut command_buffer_builder = AutoCommandBufferBuilder::new(self.device.clone(), self.queue.family()).unwrap(); command_buffer_builder.copy_buffer_to_image_dimensions( source, init, [0, 0, 0], dimensions.width_height_depth(), 0, dimensions.array_layers_with_cube(), 0, ).unwrap(); // Generate mipmaps // let mut mip_width = image_view.dimensions().width() as i32; // let mut mip_height = image_view.dimensions().height() as i32; // for i in 0..image_view.mipmap_levels() { // command_buffer_builder.blit_image( // image_view.clone(), // [0; 3], // [mip_width, mip_height, 1], // 0, // i, // image_view.clone(), // [0; 3], // [mip_width / 2, mip_height / 2, 1], // 0, // i + 1, // dimensions.array_layers_with_cube(), // Filter::Linear).unwrap(); // if mip_width > 1 { mip_width = mip_width / 2; } // if mip_height > 1 { mip_height = mip_height / 2; } // } let command_buffer = command_buffer_builder.build().unwrap(); let command_buffer_future = command_buffer.execute(self.queue.clone()).unwrap(); command_buffer_future.flush().unwrap(); self.game_data.textures.push(image_view); } pub fn add_game_object(self: &mut Self, mut game_object: GameObject, pipeline_index: usize) -> GameObjectHandle { self.pipelines[pipeline_index].create_descriptor_set(&mut game_object, self); self.game_data.game_objects.push(game_object); GameObjectHandle { object_index: self.game_data.game_objects.len() - 1 } } } pub fn start_event_loop(mut renderer: VulkanRenderer, mut game: Box, event_loop: EventLoop<()>) { event_loop.run(move |event, _, control_flow| { game.on_window_event(&event); match event { Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => { *control_flow = ControlFlow::Exit; }, Event::RedrawEventsCleared => { let ubo = game.update(&mut renderer); renderer.render_loop(ubo); }, _ => {} } }); } /// This method is called once during initialization, then again whenever the window is resized fn window_size_dependent_setup(device: Arc, images: &[Arc>], msaa_buffers: &[Arc], msaa_sample_count: u32, render_pass: Arc, dynamic_state: &mut DynamicState) -> Vec> { let dimensions = images[0].dimensions(); let dim_array = [dimensions.width() as f32, dimensions.height() as f32]; let dim_array_u32 = [dimensions.width() as u32, dimensions.height() as u32]; let viewport = Viewport { origin: [0.0, 0.0], dimensions: dim_array, depth_range: 0.0 .. 1.0, }; dynamic_state.viewports = Some(vec!(viewport)); let depth_image = AttachmentImage::multisampled_with_usage(device.clone(), dim_array_u32, msaa_sample_count, Format::D16Unorm, ImageUsage { depth_stencil_attachment: true, ..ImageUsage::none() }).unwrap(); let mut framebuffers = vec![]; for i in 0..images.len() { let image_buffer = &images[i]; let msaa_buffer = &msaa_buffers[i]; framebuffers.push(Arc::new(Framebuffer::start(render_pass.clone()) .add(image_buffer.clone()).unwrap() .add(msaa_buffer.clone()).unwrap() .add(depth_image.clone()).unwrap() .build().unwrap() ) as Arc); } framebuffers }