use std::sync::Arc; use std::time::SystemTime; use cgmath::{Matrix4, SquareMatrix}; use dds::get_block_size; use rust_engine_proc::perf; use vulkano::device::physical::PhysicalDevice; use vulkano::pipeline::viewport::Viewport; use vulkano::render_pass::{FramebufferAbstract, RenderPass}; use vulkano::{buffer::{BufferUsage, CpuAccessibleBuffer}, command_buffer::SubpassContents, image::{ImageAccess, ImageLayout, ImageUsage, MipmapsCount, immutable::SubImage}}; use vulkano::command_buffer::{AutoCommandBufferBuilder, CommandBufferUsage, PrimaryAutoCommandBuffer, PrimaryCommandBuffer}; use vulkano::device::{Device, DeviceExtensions, Features, Queue}; use vulkano::format::{ClearValue, Format}; use vulkano::image::{ImageCreateFlags, ImageDimensions, ImmutableImage}; use vulkano::instance::{ApplicationInfo, Instance, InstanceExtensions, Version}; use vulkano::instance::debug::{DebugCallback, MessageSeverity, MessageType}; use vulkano::sampler::{Filter, MipmapMode, Sampler, SamplerAddressMode}; use vulkano::swapchain::{AcquireError, FullscreenExclusive, PresentMode, Surface, SurfaceTransform, Swapchain, SwapchainCreationError}; use vulkano::swapchain; use vulkano::sync::{FlushError, GpuFuture}; use vulkano::sync; use vulkano_win::VkSurfaceBuild; use winit::event::{Event, WindowEvent}; use winit::event_loop::{ControlFlow, EventLoop}; use mesh::CPUMesh; use pipelines::Drawcall; use pipelines::{DefaultShader, TextShader}; use pipelines::vs; use winit::window::{Window, WindowBuilder}; use crate::config::RenderConfig; use crate::perf::PerformanceCounter; use crate::vulkan::gameobject::GameObject; use self::mesh::CPUVertexList; pub mod pipelines; pub mod gameobject; pub mod mesh; pub mod dds; mod renderpass; mod framebuffers; const VALIDATION_LAYERS: &[&str] = &[ "VK_LAYER_KHRONOS_validation", ]; #[derive(Default, Debug, Clone)] pub struct Vertex { pub position: [f32; 3], pub uv: [f32; 2], pub normal: [f32; 3], pub tangent: [f32; 4], pub bone_index: [i32; 4], pub bone_weight: [f32; 4], } vulkano::impl_vertex!(Vertex, position, uv, normal, tangent, bone_index, bone_weight); #[derive(Default, Debug, Clone)] pub struct LinePoint { pub position: [f32; 3], } vulkano::impl_vertex!(LinePoint, position); #[derive(Default, Debug, Clone)] pub struct TextVertex { pub position: [f32; 3], pub uv: [f32; 2], } vulkano::impl_vertex!(TextVertex, position, uv); #[derive(Default, Debug, Clone)] pub struct TextInstanceData {} vulkano::impl_vertex!(TextInstanceData); pub trait Game { /// Returns true if event should be ignored by the vulkan handler fn on_window_event(self: &mut Self, event: &Event<()>); fn update(self: &mut Self, renderer: &mut VulkanRenderer); fn get_game_objects(&self) -> &Vec; fn get_ubo(&self) -> &vs::ty::ObjectUniformData; } pub struct Mesh { pub vertex_buffer: Arc>, pub index_buffer: Arc>, pub original_path: Option, } #[derive(Debug, Clone)] pub struct MeshHandle { pub index: usize, pub textures: Vec, pub original_path: Option, pub pipeline_index: usize } pub(crate) type TextureHandle = usize; #[derive(Debug, Clone)] pub struct Texture { pub image: Arc, pub sampler: Arc } pub struct GameData { pub start_time: SystemTime, pub recreate_pipeline: bool, pub dimensions: [u32; 2], pub shutdown: bool, pub meshes: Vec>, pub meshes_text: Vec>, pub textures: Vec, } pub struct VulkanRenderer { pub game_data: GameData, pub device: Arc, pub framebuffers: Vec>, pub pipelines: Vec>, pub surface: Arc>, pub swapchain: Arc>, pub render_pass: Arc, pub queue: Arc, pub recreate_swapchain: bool, pub debug_callback: Option, pub previous_frame_end: Option>, pub uniform_buffers: Vec>>, pub render_config: RenderConfig, pub viewport: Viewport } impl VulkanRenderer { pub fn init(enable_validation_layers: bool, render_config: RenderConfig) -> (VulkanRenderer, EventLoop<()>) { // Create empty game data struct to be filled let mut data = GameData { start_time: SystemTime::now(), recreate_pipeline: false, shutdown: false, dimensions: [0, 0], meshes: vec![], meshes_text: vec![], textures: vec![], }; // Create basic vulkan instance with layers and info let instance = { let extensions = InstanceExtensions { ext_debug_utils: true, ..vulkano_win::required_extensions() }; println!("Using extensions: {:?}", extensions); let app_info = ApplicationInfo { application_name: Some("Asuro's Editor".into()), application_version: Some(Version { major: 0, minor: 1, patch: 0 }), engine_name: Some("Asuro's Rust Engine".into()), engine_version: Some(Version { major: 0, minor: 1, patch: 0 }) }; if enable_validation_layers { println!("Enabling validation layers..."); let available_layers = vulkano::instance::layers_list().unwrap().map(|layer| String::from(layer.name())).collect::>(); println!("Available layers: {:?}", available_layers); VALIDATION_LAYERS.iter().for_each(|wanted_layer_name| { if !available_layers.iter().any(|available_layer_name| available_layer_name == wanted_layer_name) { panic!("Validation layer not found: {:?}", wanted_layer_name); } }); Instance::new(Some(&app_info), Version::V1_1, &extensions, VALIDATION_LAYERS.iter().cloned()).expect("failed to create Vulkan instance") } else { Instance::new(Some(&app_info), Version::V1_1, &extensions, None).expect("failed to create Vulkan instance") } }; // lifetime of this is important, even tho it isn't used! let mut debug_callback = None; // Debug stuff if enable_validation_layers { let msg_severity = MessageSeverity { verbose: false, information: true, warning: true, error: true }; let msg_types = MessageType { general: true, performance: true, validation: true }; debug_callback = DebugCallback::new(&instance, msg_severity, msg_types, |msg| { let type_str = match (msg.severity.error, msg.severity.warning, msg.severity.information, msg.severity.verbose) { (true, _, _, _) => "!!", (_, true, _, _) => "!", (_, _, true, _) => "i", _ => "v" }; let layer_str = msg.layer_prefix; println!("[{}][{}]: {}", type_str, layer_str.unwrap_or(""), msg.description); }).ok(); } // TODO: Create device selector let physical = PhysicalDevice::enumerate(&instance).next().unwrap(); let events_loop = EventLoop::new(); let surface = WindowBuilder::new().build_vk_surface(&events_loop, instance.clone()).unwrap(); let window = surface.window(); // Queue let queue_family = physical.queue_families().find(|&q| { q.supports_graphics() && surface.is_supported(q).unwrap_or(false) }).unwrap(); let device_ext = DeviceExtensions { khr_swapchain: true, khr_maintenance1: true, ..DeviceExtensions::none() }; let (device, mut queues) = Device::new(physical, &Features::none(), &device_ext, [(queue_family, 0.5)].iter().cloned()).unwrap(); let queue = queues.next().unwrap(); // Swapchain let (swapchain, images) = { let caps = surface.capabilities(physical).unwrap(); let usage = caps.supported_usage_flags; let alpha = caps.supported_composite_alpha.iter().next().unwrap(); let (format, color_space) = caps.supported_formats[2]; let inner_size = window.inner_size(); data.dimensions = [inner_size.width, inner_size.height]; Swapchain::start(device.clone(), surface.clone()) .num_images(caps.min_image_count) .format(format) .dimensions(data.dimensions) .layers(1) .usage(usage) .sharing_mode(&queue) .transform(SurfaceTransform::Identity) .composite_alpha(alpha) .present_mode(PresentMode::Fifo) .fullscreen_exclusive(FullscreenExclusive::Default) .clipped(true) .color_space(color_space) .build().unwrap() }; let size = images[0].dimensions().width_height(); let viewport = create_viewport(size[0] as f32, size[1] as f32); // Render pass let render_pass = renderpass::create_render_pass(device.clone(), &render_config, swapchain.format()); let render_pass_text = renderpass::create_render_pass(device.clone(), &render_config, swapchain.format()); let pipelines: Vec> = vec![ Box::new(DefaultShader::new(device.clone(), render_pass.clone())), Box::new(TextShader::new(device.clone(), render_pass_text.clone())), ]; // The render pass we created above only describes the layout of our framebuffers. Before we // can draw we also need to create the actual framebuffers. let framebuffers = framebuffers::create_framebuffers(device.clone(), &swapchain, &images, render_config.get_msaa(), render_pass.clone()); let mut uniform_buffers = Vec::new(); let uniform_buffer = vs::ty::ObjectUniformData { view: Matrix4::identity().into(), projection: Matrix4::identity().into(), ortho_projection: Matrix4::identity().into(), time: 0.0, light_position: [0.0, 0.0, 0.0], light_directional_rotation: [0.0, 0.0, 0.0], camera_position: [0.0, 0.0, 0.0], _dummy0: [0; 12], _dummy1: [0; 4], _dummy2: [0; 4], }; for _ in 0..swapchain.num_images() { uniform_buffers.push(CpuAccessibleBuffer::from_data( device.clone(), BufferUsage::uniform_buffer_transfer_destination(), false, uniform_buffer, ).unwrap()); } // In the loop below we are going to submit commands to the GPU. Submitting a command produces // an object that implements the `GpuFuture` trait, which holds the resources for as long as // they are in use by the GPU. // // Destroying the `GpuFuture` blocks until the GPU is finished executing it. In order to avoid // that, we store the submission of the previous frame here. let previous_frame_end = Some(Box::new(sync::now(device.clone())) as Box); (VulkanRenderer { game_data: data, device, framebuffers, pipelines, uniform_buffers, surface, swapchain, render_pass, queue, recreate_swapchain: false, debug_callback, previous_frame_end, render_config, viewport }, events_loop) } fn create_command_buffer(self: &mut Self, fb_index: usize, uniform_buffer_data: &vs::ty::ObjectUniformData, game_objects: &Vec) -> Arc { // General setup let mut builder = AutoCommandBufferBuilder::primary(self.device.clone(), self.queue.family(), CommandBufferUsage::OneTimeSubmit).unwrap(); builder.update_buffer(self.uniform_buffers[fb_index].clone(), Arc::new(*uniform_buffer_data)).unwrap(); if self.render_config.msaa_samples > 0 { builder.begin_render_pass(self.framebuffers[fb_index].clone(), SubpassContents::Inline, vec![ClearValue::None, ClearValue::Float([0.0, 0.0, 0.0, 1.0]), ClearValue::Depth(1.0)]).unwrap(); } else { builder.begin_render_pass(self.framebuffers[fb_index].clone(), SubpassContents::Inline, vec![ClearValue::Float([0.0, 0.0, 0.0, 1.0]), ClearValue::Depth(1.0)]).unwrap(); } builder.set_viewport(0, [self.viewport.clone()]); // Draw meshes etc. let mut index = 0; for pipeline in &self.pipelines { let objects = game_objects.iter().filter(|go| go.visible && go.pipeline_index == index).collect(); pipeline.draw(&mut builder, fb_index, objects, &self.game_data); index += 1; } // General cleanup builder.end_render_pass().unwrap(); Arc::new(builder.build().unwrap()) } #[perf("renderer", crate::perf::PerformanceCounter)] pub fn render_loop(self: &mut Self, new_ubo: &vs::ty::ObjectUniformData, game_objects: &Vec) { // cleanup previous frame self.previous_frame_end.as_mut().unwrap().cleanup_finished(); // recreate swapchain if window size changed if self.recreate_swapchain { let window = self.surface.window(); let inner_size = window.inner_size(); self.game_data.dimensions = [inner_size.width, inner_size.height]; let (new_swapchain, new_images) = match self.swapchain.recreate().dimensions(self.game_data.dimensions).build() { Ok(r) => r, // This error tends to happen when the user is manually resizing the window. // Simply restarting the loop is the easiest way to fix this issue. Err(SwapchainCreationError::UnsupportedDimensions) => { println!("Swapchain rejected: UnsupportedDimensions"); return; } Err(err) => panic!("{:?}", err), }; let size = new_images[0].dimensions().width_height(); self.viewport = create_viewport(size[0] as f32, size[1] as f32); self.render_pass = renderpass::create_render_pass(self.device.clone(), &self.render_config, new_swapchain.format()); self.pipelines = vec![ Box::new(DefaultShader::new(self.device.clone(), self.render_pass.clone())), Box::new(TextShader::new(self.device.clone(), self.render_pass.clone())), ]; self.swapchain = new_swapchain; // Because framebuffers contains an Arc on the old swapchain, we need to // recreate framebuffers as well. self.framebuffers = framebuffers::create_framebuffers(self.device.clone(), &self.swapchain, &new_images, self.render_config.get_msaa(), self.render_pass.clone()); self.recreate_swapchain = false; } // recreate pipeline if requested if self.game_data.recreate_pipeline { let device = self.device.clone(); let render_pass = self.render_pass.clone(); self.pipelines.iter_mut().for_each(|pipeline| pipeline.recreate_pipeline(device.clone(), render_pass.clone())); self.game_data.recreate_pipeline = false; } // Before we can draw on the output, we have to *acquire* an image from the swapchain. If // no image is available (which happens if you submit draw commands too quickly), then the // function will block. // This operation returns the index of the image that we are allowed to draw upon. // // This function can block if no image is available. The parameter is an optional timeout // after which the function call will return an error. let (fb_index, _, acquire_future) = match swapchain::acquire_next_image(self.swapchain.clone(), None) { Ok(r) => r, Err(AcquireError::OutOfDate) => { self.recreate_swapchain = true; return; }, Err(err) => panic!("{:?}", err) }; let command_buffer = self.create_command_buffer(fb_index, new_ubo, game_objects).clone(); let future = self.previous_frame_end.take().unwrap() .join(acquire_future) .then_execute(self.queue.clone(), command_buffer).unwrap() .then_swapchain_present(self.queue.clone(), self.swapchain.clone(), fb_index) .then_signal_fence_and_flush(); match future { Ok(future) => { // we're joining on the previous future but the CPU is running faster than the GPU so // eventually it stutters, and jumps ahead to the newer frames. // // See vulkano issue 1135: https://github.com/vulkano-rs/vulkano/issues/1135 // This makes sure the CPU stays in sync with the GPU in situations when the CPU is // running "too fast" #[cfg(target_os = "macos")] future.wait(None).unwrap(); self.previous_frame_end = Some(Box::new(future) as Box<_>); }, Err(FlushError::OutOfDate) => { println!("Swapchain out of date!"); self.recreate_swapchain = true; self.previous_frame_end = Some(Box::new(sync::now(self.device.clone())) as Box<_>); } Err(e) => { println!("{:?}", e); self.previous_frame_end = Some(Box::new(sync::now(self.device.clone())) as Box<_>); } }; } pub fn upload_mesh(self: &mut Self, mesh: CPUMesh, original_path: Option) -> usize { let index_buffer = CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::index_buffer(), false, mesh.indices.into_iter()).unwrap(); match mesh.vertices { CPUVertexList::Vertex3D(verts) => { let vertex_buffer = CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::vertex_buffer(), false, verts.into_iter()).unwrap(); self.game_data.meshes.push(Mesh { vertex_buffer, index_buffer, original_path }); self.game_data.meshes.len() - 1 }, CPUVertexList::VertexText(verts) => { let vertex_buffer = CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::vertex_buffer(), false, verts.into_iter()).unwrap(); self.game_data.meshes_text.push(Mesh { vertex_buffer, index_buffer, original_path }); self.game_data.meshes_text.len() - 1 }, } } pub fn update_mesh(self: &mut Self, mesh_index: usize, vertices: CPUVertexList, indices: Vec) { let index_buffer = CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::index_buffer(), false, indices.into_iter()).unwrap(); match vertices { CPUVertexList::Vertex3D(verts) => { let mesh = &mut self.game_data.meshes[mesh_index]; mesh.vertex_buffer = CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::vertex_buffer(), false, verts.into_iter()).unwrap(); mesh.index_buffer = index_buffer; }, CPUVertexList::VertexText(verts) => { let mesh = &mut self.game_data.meshes_text[mesh_index]; mesh.vertex_buffer = CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::vertex_buffer(), false, verts.into_iter()).unwrap(); mesh.index_buffer = index_buffer; } } } pub fn upload_texture(self: &mut Self, bytes: &[u8], width: u32, height: u32, format: Format, filter: Filter, wrap: SamplerAddressMode, device: Arc) -> Texture { let dimensions = ImageDimensions::Dim2d { width, height, array_layers: 1 }; let usage = ImageUsage { transfer_destination: true, transfer_source: true, sampled: true, ..ImageUsage::none() }; let mip_maps = if format == Format::R8_UINT { MipmapsCount::One } else { MipmapsCount::Log2 }; let (image_view, initializer) = ImmutableImage::uninitialized( device.clone(), dimensions, format, mip_maps, usage, ImageCreateFlags::default(), ImageLayout::ShaderReadOnlyOptimal, device.active_queue_families(), ).unwrap(); let init = SubImage::new( Arc::new(initializer), 0, image_view.mipmap_levels(), 0, 1, ImageLayout::ShaderReadOnlyOptimal, ); let mut cbb = AutoCommandBufferBuilder::primary(device.clone(), self.queue.family(), CommandBufferUsage::OneTimeSubmit).unwrap(); let mut offset = 0; let block_bytes = get_block_size(format); let mut upload_bytes = |data: &[u8], mip_index: u32, mip_size: [u32; 3]| { let source = CpuAccessibleBuffer::from_iter( device.clone(), BufferUsage::transfer_source(), false, data.iter().cloned(), ).unwrap(); cbb.copy_buffer_to_image_dimensions( source.clone(), init.clone(), [0, 0, 0], mip_size, 0, dimensions.array_layers(), mip_index, ).unwrap(); }; if let Some(block_byte_size) = block_bytes { for i in 0..image_view.mipmap_levels() { let mip_size = dimensions.mipmap_dimensions(i).unwrap().width_height_depth(); let mip_byte_size = ( (u32::max(4, mip_size[0]) / 4) * (u32::max(4, mip_size[1]) / 4) * block_byte_size) as usize; let data = &bytes[offset..(offset + mip_byte_size)]; upload_bytes(data, i, mip_size); offset += mip_byte_size; } } else { let mut texture_bytes: Vec = bytes.to_vec(); texture_bytes.resize((width * height) as usize, 0u8); upload_bytes(&texture_bytes, 0, dimensions.width_height_depth()); } let cb = cbb.build().unwrap(); let future = match cb.execute(self.queue.clone()) { Ok(f) => f, Err(e) => unreachable!("{:?}", e) }; future.flush().unwrap(); let sampler = Sampler::new(device.clone(), filter, filter, MipmapMode::Linear, wrap, wrap, wrap, 0.0, 1.0, 0.0, (image_view.mipmap_levels() - 1) as f32).unwrap(); Texture { image: image_view, sampler } } pub fn update_texture(&mut self, tex_handle: TextureHandle, new_data: &[u8], new_data_dimensions: [u32; 3], new_data_offset: [u32; 3], device: Arc) { let texture = &mut self.game_data.textures[tex_handle]; let old_sub_image = SubImage::new( texture.image.clone(), 0, 1, 0, 1, ImageLayout::ShaderReadOnlyOptimal, ); let mut cbb = AutoCommandBufferBuilder::primary(device.clone(), self.queue.family(), CommandBufferUsage::OneTimeSubmit).unwrap(); let upload_source = CpuAccessibleBuffer::from_iter( device.clone(), BufferUsage::transfer_source(), false, new_data.iter().cloned(), ).unwrap(); cbb.copy_buffer_to_image_dimensions( upload_source.clone(), old_sub_image.clone(), new_data_offset, new_data_dimensions, 0, 1, 0, ).unwrap(); let cb = cbb.build().unwrap(); let future = cb.execute(self.queue.clone()).unwrap(); future.flush().unwrap(); } pub fn resize_texture(&mut self, game_object: &mut GameObject, texture_handle: TextureHandle, new_size: ImageDimensions) { let mut texture = &mut self.game_data.textures[texture_handle]; let new_image_usage = ImageUsage { transfer_destination: true, transfer_source: true, sampled: true, ..ImageUsage::none() }; let (new_image_view, new_image_initializer) = ImmutableImage::uninitialized( self.device.clone(), new_size, texture.image.format(), texture.image.mipmap_levels(), new_image_usage, ImageCreateFlags::default(), ImageLayout::ShaderReadOnlyOptimal, self.device.active_queue_families(), ).unwrap(); let old_sub_image = SubImage::new( texture.image.clone(), 0, 1, 0, 1, ImageLayout::ShaderReadOnlyOptimal, ); let new_sub_image = SubImage::new( Arc::new(new_image_initializer), 0, new_image_view.mipmap_levels(), 0, 1, ImageLayout::ShaderReadOnlyOptimal, ); let mut cbb = AutoCommandBufferBuilder::primary(self.device.clone(), self.queue.family(), CommandBufferUsage::OneTimeSubmit).unwrap(); cbb.copy_image( old_sub_image.clone(), [0, 0, 0], 0, 0, new_sub_image.clone(), [10, 0, 0], 0, 0, old_sub_image.dimensions().width_height_depth(), 1 ).unwrap(); let cb = cbb.build().unwrap(); let future = cb.execute(self.queue.clone()).unwrap(); future.flush().unwrap(); texture.image = new_image_view; game_object.init_descriptor_sets(self); } pub fn clear_all(&mut self) { self.game_data.meshes.clear(); self.game_data.textures.clear(); } } pub fn start_event_loop(mut renderer: VulkanRenderer, mut game: Box, event_loop: EventLoop<()>) { PerformanceCounter::init_perf(); event_loop.run(move |event, _, control_flow| { game.on_window_event(&event); if renderer.game_data.shutdown { *control_flow = ControlFlow::Exit; } match event { Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => { *control_flow = ControlFlow::Exit; }, Event::WindowEvent { event: WindowEvent::Resized(..), .. } => { renderer.recreate_swapchain = true; }, Event::RedrawRequested(..) => { PerformanceCounter::perf_next_frame("renderer"); renderer.render_loop(game.get_ubo(), &game.get_game_objects()); }, Event::MainEventsCleared => { PerformanceCounter::perf_next_frame("update"); PerformanceCounter::perf_next_frame("input_events"); game.update(&mut renderer); renderer.surface.window().request_redraw(); }, _ => {} } }); } pub fn create_viewport(width: f32, height: f32) -> Viewport { Viewport { origin: [0.0, 0.0], dimensions: [width, height], depth_range: 0.0..1.0, } // Viewport { // origin: [0.0, height], // dimensions: [width, -height], // depth_range: 0.0..1.0, // } }