triangle and line
This commit is contained in:
79
.gitignore
vendored
Normal file
79
.gitignore
vendored
Normal file
@@ -0,0 +1,79 @@
|
||||
# Generated by Cargo
|
||||
# will have compiled files and executables
|
||||
/target/
|
||||
|
||||
# Remove Cargo.lock from gitignore if creating an executable, leave it for libraries
|
||||
# More information here https://doc.rust-lang.org/cargo/guide/cargo-toml-vs-cargo-lock.html
|
||||
Cargo.lock
|
||||
|
||||
# These are backup files generated by rustfmt
|
||||
**/*.rs.bk
|
||||
|
||||
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
|
||||
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
|
||||
|
||||
# User-specific stuff
|
||||
.idea/**/workspace.xml
|
||||
.idea/**/tasks.xml
|
||||
.idea/**/usage.statistics.xml
|
||||
.idea/**/dictionaries
|
||||
.idea/**/shelf
|
||||
|
||||
# Generated files
|
||||
.idea/**/contentModel.xml
|
||||
|
||||
# Sensitive or high-churn files
|
||||
.idea/**/dataSources/
|
||||
.idea/**/dataSources.ids
|
||||
.idea/**/dataSources.local.xml
|
||||
.idea/**/sqlDataSources.xml
|
||||
.idea/**/dynamic.xml
|
||||
.idea/**/uiDesigner.xml
|
||||
.idea/**/dbnavigator.xml
|
||||
|
||||
# Gradle
|
||||
.idea/**/gradle.xml
|
||||
.idea/**/libraries
|
||||
|
||||
# Gradle and Maven with auto-import
|
||||
# When using Gradle or Maven with auto-import, you should exclude module files,
|
||||
# since they will be recreated, and may cause churn. Uncomment if using
|
||||
# auto-import.
|
||||
# .idea/modules.xml
|
||||
# .idea/*.iml
|
||||
# .idea/modules
|
||||
# *.iml
|
||||
# *.ipr
|
||||
|
||||
# CMake
|
||||
cmake-build-*/
|
||||
|
||||
# Mongo Explorer plugin
|
||||
.idea/**/mongoSettings.xml
|
||||
|
||||
# File-based project format
|
||||
*.iws
|
||||
|
||||
# IntelliJ
|
||||
out/
|
||||
|
||||
# mpeltonen/sbt-idea plugin
|
||||
.idea_modules/
|
||||
|
||||
# JIRA plugin
|
||||
atlassian-ide-plugin.xml
|
||||
|
||||
# Cursive Clojure plugin
|
||||
.idea/replstate.xml
|
||||
|
||||
# Crashlytics plugin (for Android Studio and IntelliJ)
|
||||
com_crashlytics_export_strings.xml
|
||||
crashlytics.properties
|
||||
crashlytics-build.properties
|
||||
fabric.properties
|
||||
|
||||
# Editor-based Rest Client
|
||||
.idea/httpRequests
|
||||
|
||||
# Android studio 3.1+ serialized cache file
|
||||
.idea/caches/build_file_checksums.ser
|
||||
6
.idea/misc.xml
generated
Normal file
6
.idea/misc.xml
generated
Normal file
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectRootManager">
|
||||
<output url="file://$PROJECT_DIR$/out" />
|
||||
</component>
|
||||
</project>
|
||||
8
.idea/modules.xml
generated
Normal file
8
.idea/modules.xml
generated
Normal file
@@ -0,0 +1,8 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectModuleManager">
|
||||
<modules>
|
||||
<module fileurl="file://$PROJECT_DIR$/rust-engine.iml" filepath="$PROJECT_DIR$/rust-engine.iml" />
|
||||
</modules>
|
||||
</component>
|
||||
</project>
|
||||
6
.idea/vcs.xml
generated
Normal file
6
.idea/vcs.xml
generated
Normal file
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="VcsDirectoryMappings">
|
||||
<mapping directory="" vcs="Git" />
|
||||
</component>
|
||||
</project>
|
||||
14
Cargo.toml
Normal file
14
Cargo.toml
Normal file
@@ -0,0 +1,14 @@
|
||||
[package]
|
||||
name = "rust-engine"
|
||||
version = "0.1.0"
|
||||
authors = ["Till <asuro@posteo.de>"]
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
vulkano-shaders = "0.13"
|
||||
vulkano = "0.13"
|
||||
vulkano-win = "0.13"
|
||||
cgmath = "0.17"
|
||||
image = "0.21"
|
||||
winit = "0.19"
|
||||
time = "0.1.37"
|
||||
15
rust-engine.iml
Normal file
15
rust-engine.iml
Normal file
@@ -0,0 +1,15 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<module type="RUST_MODULE" version="4">
|
||||
<component name="NewModuleRootManager" inherit-compiler-output="true">
|
||||
<exclude-output />
|
||||
<content url="file://$MODULE_DIR$">
|
||||
<sourceFolder url="file://$MODULE_DIR$/src" isTestSource="false" />
|
||||
<sourceFolder url="file://$MODULE_DIR$/examples" isTestSource="false" />
|
||||
<sourceFolder url="file://$MODULE_DIR$/tests" isTestSource="true" />
|
||||
<sourceFolder url="file://$MODULE_DIR$/benches" isTestSource="true" />
|
||||
<excludeFolder url="file://$MODULE_DIR$/target" />
|
||||
</content>
|
||||
<orderEntry type="inheritedJdk" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
</module>
|
||||
7
shaders/triangle.frag
Normal file
7
shaders/triangle.frag
Normal file
@@ -0,0 +1,7 @@
|
||||
#version 450
|
||||
|
||||
layout(location = 0) out vec4 f_color;
|
||||
|
||||
void main() {
|
||||
f_color = vec4(1.0, 0.0, 0.0, 1.0);
|
||||
}
|
||||
7
shaders/triangle.vert
Normal file
7
shaders/triangle.vert
Normal file
@@ -0,0 +1,7 @@
|
||||
#version 450
|
||||
|
||||
layout(location = 0) in vec2 position;
|
||||
|
||||
void main() {
|
||||
gl_Position = vec4(position, 0.0, 1.0);
|
||||
}
|
||||
5
src/main.rs
Normal file
5
src/main.rs
Normal file
@@ -0,0 +1,5 @@
|
||||
mod vulkan;
|
||||
|
||||
fn main() {
|
||||
vulkan::init();
|
||||
}
|
||||
444
src/vulkan.rs
Normal file
444
src/vulkan.rs
Normal file
@@ -0,0 +1,444 @@
|
||||
use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer};
|
||||
use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState};
|
||||
use vulkano::device::{Device, DeviceExtensions};
|
||||
use vulkano::framebuffer::{Framebuffer, FramebufferAbstract, Subpass, RenderPassAbstract};
|
||||
use vulkano::image::SwapchainImage;
|
||||
use vulkano::instance::{Instance, PhysicalDevice};
|
||||
use vulkano::pipeline::GraphicsPipeline;
|
||||
use vulkano::pipeline::viewport::Viewport;
|
||||
use vulkano::swapchain::{AcquireError, PresentMode, SurfaceTransform, Swapchain, SwapchainCreationError};
|
||||
use vulkano::swapchain;
|
||||
use vulkano::sync::{GpuFuture, FlushError};
|
||||
use vulkano::sync;
|
||||
|
||||
use vulkano_win::VkSurfaceBuild;
|
||||
|
||||
use winit::{EventsLoop, Window, WindowBuilder, Event, WindowEvent};
|
||||
|
||||
use std::sync::Arc;
|
||||
|
||||
mod vs {
|
||||
vulkano_shaders::shader!{
|
||||
ty: "vertex",
|
||||
path: "shaders/triangle.vert",
|
||||
}
|
||||
}
|
||||
|
||||
mod fs {
|
||||
vulkano_shaders::shader!{
|
||||
ty: "fragment",
|
||||
path: "shaders/triangle.frag",
|
||||
}
|
||||
}
|
||||
|
||||
mod line_vs {
|
||||
vulkano_shaders::shader!{
|
||||
ty: "vertex",
|
||||
path: "shaders/triangle.vert",
|
||||
}
|
||||
}
|
||||
|
||||
mod line_fs {
|
||||
vulkano_shaders::shader!{
|
||||
ty: "fragment",
|
||||
path: "shaders/triangle.frag",
|
||||
}
|
||||
}
|
||||
|
||||
pub fn init() {
|
||||
let instance = {
|
||||
let extensions = vulkano_win::required_extensions();
|
||||
Instance::new(None, &extensions, None).unwrap()
|
||||
};
|
||||
let physical = PhysicalDevice::enumerate(&instance).next().unwrap();
|
||||
println!("Using device: {} (type: {:?})", physical.name(), physical.ty());
|
||||
|
||||
let mut events_loop = EventsLoop::new();
|
||||
let surface = WindowBuilder::new().build_vk_surface(&events_loop, instance.clone()).unwrap();
|
||||
let window = surface.window();
|
||||
|
||||
// The next step is to choose which GPU queue will execute our draw commands.
|
||||
//
|
||||
// Devices can provide multiple queues to run commands in parallel (for example a draw queue
|
||||
// and a compute queue), similar to CPU threads. This is something you have to have to manage
|
||||
// manually in Vulkan.
|
||||
//
|
||||
// In a real-life application, we would probably use at least a graphics queue and a transfers
|
||||
// queue to handle data transfers in parallel. In this example we only use one queue.
|
||||
//
|
||||
// We have to choose which queues to use early on, because we will need this info very soon.
|
||||
let queue_family = physical.queue_families().find(|&q| {
|
||||
// We take the first queue that supports drawing to our window.
|
||||
q.supports_graphics() && surface.is_supported(q).unwrap_or(false)
|
||||
}).unwrap();
|
||||
|
||||
// Now initializing the device. This is probably the most important object of Vulkan.
|
||||
//
|
||||
// We have to pass five parameters when creating a device:
|
||||
//
|
||||
// - Which physical device to connect to.
|
||||
//
|
||||
// - A list of optional features and extensions that our program needs to work correctly.
|
||||
// Some parts of the Vulkan specs are optional and must be enabled manually at device
|
||||
// creation. In this example the only thing we are going to need is the `khr_swapchain`
|
||||
// extension that allows us to draw to a window.
|
||||
//
|
||||
// - A list of layers to enable. This is very niche, and you will usually pass `None`.
|
||||
//
|
||||
// - The list of queues that we are going to use. The exact parameter is an iterator whose
|
||||
// items are `(Queue, f32)` where the floating-point represents the priority of the queue
|
||||
// between 0.0 and 1.0. The priority of the queue is a hint to the implementation about how
|
||||
// much it should prioritize queues between one another.
|
||||
//
|
||||
// The list of created queues is returned by the function alongside with the device.
|
||||
let device_ext = DeviceExtensions { khr_swapchain: true, .. DeviceExtensions::none() };
|
||||
let (device, mut queues) = Device::new(physical, physical.supported_features(), &device_ext,
|
||||
[(queue_family, 0.5)].iter().cloned()).unwrap();
|
||||
|
||||
// Since we can request multiple queues, the `queues` variable is in fact an iterator. In this
|
||||
// example we use only one queue, so we just retrieve the first and only element of the
|
||||
// iterator and throw it away.
|
||||
let queue = queues.next().unwrap();
|
||||
|
||||
// Before we can draw on the surface, we have to create what is called a swapchain. Creating
|
||||
// a swapchain allocates the color buffers that will contain the image that will ultimately
|
||||
// be visible on the screen. These images are returned alongside with the swapchain.
|
||||
let (mut swapchain, images) = {
|
||||
// Querying the capabilities of the surface. When we create the swapchain we can only
|
||||
// pass values that are allowed by the capabilities.
|
||||
let caps = surface.capabilities(physical).unwrap();
|
||||
|
||||
let usage = caps.supported_usage_flags;
|
||||
|
||||
// The alpha mode indicates how the alpha value of the final image will behave. For example
|
||||
// you can choose whether the window will be opaque or transparent.
|
||||
let alpha = caps.supported_composite_alpha.iter().next().unwrap();
|
||||
|
||||
// Choosing the internal format that the images will have.
|
||||
let format = caps.supported_formats[0].0;
|
||||
|
||||
// The dimensions of the window, only used to initially setup the swapchain.
|
||||
// NOTE:
|
||||
// On some drivers the swapchain dimensions are specified by `caps.current_extent` and the
|
||||
// swapchain size must use these dimensions.
|
||||
// These dimensions are always the same as the window dimensions
|
||||
//
|
||||
// However other drivers dont specify a value i.e. `caps.current_extent` is `None`
|
||||
// These drivers will allow anything but the only sensible value is the window dimensions.
|
||||
//
|
||||
// Because for both of these cases, the swapchain needs to be the window dimensions, we just use that.
|
||||
let initial_dimensions = if let Some(dimensions) = window.get_inner_size() {
|
||||
// convert to physical pixels
|
||||
let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into();
|
||||
[dimensions.0, dimensions.1]
|
||||
} else {
|
||||
// The window no longer exists so exit the application.
|
||||
return;
|
||||
};
|
||||
|
||||
// Please take a look at the docs for the meaning of the parameters we didn't mention.
|
||||
Swapchain::new(device.clone(), surface.clone(), caps.min_image_count, format,
|
||||
initial_dimensions, 1, usage, &queue, SurfaceTransform::Identity, alpha,
|
||||
PresentMode::Fifo, true, None).unwrap()
|
||||
|
||||
};
|
||||
|
||||
#[derive(Default, Debug, Clone)]
|
||||
struct Vertex { position: [f32; 2] }
|
||||
vulkano::impl_vertex!(Vertex, position);
|
||||
// We now create a buffer that will store the shape of our triangle.
|
||||
let vertex_buffer = {
|
||||
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), [
|
||||
Vertex { position: [-0.5, -0.25] },
|
||||
Vertex { position: [0.0, 0.5] },
|
||||
Vertex { position: [0.25, -0.1] }
|
||||
].iter().cloned()).unwrap()
|
||||
};
|
||||
|
||||
let line_vertex_buffer = {
|
||||
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), [
|
||||
Vertex { position: [-0.4, -0.3] },
|
||||
Vertex { position: [0.01, 0.55] },
|
||||
].iter().cloned()).unwrap()
|
||||
};
|
||||
|
||||
// The next step is to create the shaders.
|
||||
//
|
||||
// The raw shader creation API provided by the vulkano library is unsafe, for various reasons.
|
||||
//
|
||||
// An overview of what the `vulkano_shaders::shader!` macro generates can be found in the
|
||||
// `vulkano-shaders` crate docs. You can view them at https://docs.rs/vulkano-shaders/
|
||||
//
|
||||
// TODO: explain this in details
|
||||
|
||||
// At this point, OpenGL initialization would be finished. However in Vulkan it is not. OpenGL
|
||||
// implicitly does a lot of computation whenever you draw. In Vulkan, you have to do all this
|
||||
// manually.
|
||||
|
||||
// The next step is to create a *render pass*, which is an object that describes where the
|
||||
// output of the graphics pipeline will go. It describes the layout of the images
|
||||
// where the colors, depth and/or stencil information will be written.
|
||||
let render_pass = Arc::new(vulkano::single_pass_renderpass!(
|
||||
device.clone(),
|
||||
attachments: {
|
||||
// `color` is a custom name we give to the first and only attachment.
|
||||
color: {
|
||||
// `load: Clear` means that we ask the GPU to clear the content of this
|
||||
// attachment at the start of the drawing.
|
||||
load: Clear,
|
||||
// `store: Store` means that we ask the GPU to store the output of the draw
|
||||
// in the actual image. We could also ask it to discard the result.
|
||||
store: Store,
|
||||
// `format: <ty>` indicates the type of the format of the image. This has to
|
||||
// be one of the types of the `vulkano::format` module (or alternatively one
|
||||
// of your structs that implements the `FormatDesc` trait). Here we use the
|
||||
// same format as the swapchain.
|
||||
format: swapchain.format(),
|
||||
// TODO:
|
||||
samples: 1,
|
||||
}
|
||||
},
|
||||
pass: {
|
||||
// We use the attachment named `color` as the one and only color attachment.
|
||||
color: [color],
|
||||
// No depth-stencil attachment is indicated with empty brackets.
|
||||
depth_stencil: {}
|
||||
}
|
||||
).unwrap());
|
||||
|
||||
let vs = vs::Shader::load(device.clone()).unwrap();
|
||||
let fs = fs::Shader::load(device.clone()).unwrap();
|
||||
|
||||
let line_vs = line_vs::Shader::load(device.clone()).unwrap();
|
||||
let line_fs = line_fs::Shader::load(device.clone()).unwrap();
|
||||
|
||||
let sub_pass = Subpass::from(render_pass.clone(), 0).unwrap();
|
||||
|
||||
// Before we draw we have to create what is called a pipeline. This is similar to an OpenGL
|
||||
// program, but much more specific.
|
||||
let pipeline = Arc::new(GraphicsPipeline::start()
|
||||
// We need to indicate the layout of the vertices.
|
||||
// The type `SingleBufferDefinition` actually contains a template parameter corresponding
|
||||
// to the type of each vertex. But in this code it is automatically inferred.
|
||||
.vertex_input_single_buffer()
|
||||
// A Vulkan shader can in theory contain multiple entry points, so we have to specify
|
||||
// which one. The `main` word of `main_entry_point` actually corresponds to the name of
|
||||
// the entry point.
|
||||
.vertex_shader(vs.main_entry_point(), ())
|
||||
// The content of the vertex buffer describes a list of triangles.
|
||||
.triangle_list()
|
||||
// Use a resizable viewport set to draw over the entire window
|
||||
.viewports_dynamic_scissors_irrelevant(1)
|
||||
// See `vertex_shader`.
|
||||
.fragment_shader(fs.main_entry_point(), ())
|
||||
// We have to indicate which subpass of which render pass this pipeline is going to be used
|
||||
// in. The pipeline will only be usable from this particular subpass.
|
||||
.render_pass(sub_pass.clone())
|
||||
// Now that our builder is filled, we call `build()` to obtain an actual pipeline.
|
||||
.build(device.clone())
|
||||
.unwrap());
|
||||
|
||||
let line_pipeline = Arc::new(GraphicsPipeline::start()
|
||||
.vertex_input_single_buffer()
|
||||
.vertex_shader(line_vs.main_entry_point(), ())
|
||||
.line_list()
|
||||
.viewports_dynamic_scissors_irrelevant(1)
|
||||
.fragment_shader(line_fs.main_entry_point(), ())
|
||||
.render_pass(sub_pass.clone())
|
||||
.build(device.clone())
|
||||
.unwrap());
|
||||
|
||||
// Dynamic viewports allow us to recreate just the viewport when the window is resized
|
||||
// Otherwise we would have to recreate the whole pipeline.
|
||||
let mut dynamic_state = DynamicState { line_width: None, viewports: None, scissors: None };
|
||||
|
||||
// The render pass we created above only describes the layout of our framebuffers. Before we
|
||||
// can draw we also need to create the actual framebuffers.
|
||||
//
|
||||
// Since we need to draw to multiple images, we are going to create a different framebuffer for
|
||||
// each image.
|
||||
let mut framebuffers = window_size_dependent_setup(&images, render_pass.clone(), &mut dynamic_state);
|
||||
|
||||
// Initialization is finally finished!
|
||||
|
||||
// In some situations, the swapchain will become invalid by itself. This includes for example
|
||||
// when the window is resized (as the images of the swapchain will no longer match the
|
||||
// window's) or, on Android, when the application went to the background and goes back to the
|
||||
// foreground.
|
||||
//
|
||||
// In this situation, acquiring a swapchain image or presenting it will return an error.
|
||||
// Rendering to an image of that swapchain will not produce any error, but may or may not work.
|
||||
// To continue rendering, we need to recreate the swapchain by creating a new swapchain.
|
||||
// Here, we remember that we need to do this for the next loop iteration.
|
||||
let mut recreate_swapchain = false;
|
||||
|
||||
// In the loop below we are going to submit commands to the GPU. Submitting a command produces
|
||||
// an object that implements the `GpuFuture` trait, which holds the resources for as long as
|
||||
// they are in use by the GPU.
|
||||
//
|
||||
// Destroying the `GpuFuture` blocks until the GPU is finished executing it. In order to avoid
|
||||
// that, we store the submission of the previous frame here.
|
||||
let mut previous_frame_end = Box::new(sync::now(device.clone())) as Box<dyn GpuFuture>;
|
||||
|
||||
loop {
|
||||
// It is important to call this function from time to time, otherwise resources will keep
|
||||
// accumulating and you will eventually reach an out of memory error.
|
||||
// Calling this function polls various fences in order to determine what the GPU has
|
||||
// already processed, and frees the resources that are no longer needed.
|
||||
previous_frame_end.cleanup_finished();
|
||||
|
||||
// Whenever the window resizes we need to recreate everything dependent on the window size.
|
||||
// In this example that includes the swapchain, the framebuffers and the dynamic state viewport.
|
||||
if recreate_swapchain {
|
||||
// Get the new dimensions of the window.
|
||||
let dimensions = if let Some(dimensions) = window.get_inner_size() {
|
||||
let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into();
|
||||
[dimensions.0, dimensions.1]
|
||||
} else {
|
||||
return;
|
||||
};
|
||||
|
||||
let (new_swapchain, new_images) = match swapchain.recreate_with_dimension(dimensions) {
|
||||
Ok(r) => r,
|
||||
// This error tends to happen when the user is manually resizing the window.
|
||||
// Simply restarting the loop is the easiest way to fix this issue.
|
||||
Err(SwapchainCreationError::UnsupportedDimensions) => continue,
|
||||
Err(err) => panic!("{:?}", err)
|
||||
};
|
||||
|
||||
swapchain = new_swapchain;
|
||||
// Because framebuffers contains an Arc on the old swapchain, we need to
|
||||
// recreate framebuffers as well.
|
||||
framebuffers = window_size_dependent_setup(&new_images, render_pass.clone(), &mut dynamic_state);
|
||||
|
||||
recreate_swapchain = false;
|
||||
}
|
||||
|
||||
// Before we can draw on the output, we have to *acquire* an image from the swapchain. If
|
||||
// no image is available (which happens if you submit draw commands too quickly), then the
|
||||
// function will block.
|
||||
// This operation returns the index of the image that we are allowed to draw upon.
|
||||
//
|
||||
// This function can block if no image is available. The parameter is an optional timeout
|
||||
// after which the function call will return an error.
|
||||
let (image_num, acquire_future) = match swapchain::acquire_next_image(swapchain.clone(), None) {
|
||||
Ok(r) => r,
|
||||
Err(AcquireError::OutOfDate) => {
|
||||
recreate_swapchain = true;
|
||||
continue;
|
||||
},
|
||||
Err(err) => panic!("{:?}", err)
|
||||
};
|
||||
|
||||
// Specify the color to clear the framebuffer with i.e. blue
|
||||
let clear_values = vec!([0.0, 0.0, 1.0, 1.0].into());
|
||||
|
||||
// In order to draw, we have to build a *command buffer*. The command buffer object holds
|
||||
// the list of commands that are going to be executed.
|
||||
//
|
||||
// Building a command buffer is an expensive operation (usually a few hundred
|
||||
// microseconds), but it is known to be a hot path in the driver and is expected to be
|
||||
// optimized.
|
||||
//
|
||||
// Note that we have to pass a queue family when we create the command buffer. The command
|
||||
// buffer will only be executable on that given queue family.
|
||||
let command_buffer = AutoCommandBufferBuilder::primary_one_time_submit(device.clone(), queue.family()).unwrap()
|
||||
// Before we can draw, we have to *enter a render pass*. There are two methods to do
|
||||
// this: `draw_inline` and `draw_secondary`. The latter is a bit more advanced and is
|
||||
// not covered here.
|
||||
//
|
||||
// The third parameter builds the list of values to clear the attachments with. The API
|
||||
// is similar to the list of attachments when building the framebuffers, except that
|
||||
// only the attachments that use `load: Clear` appear in the list.
|
||||
.begin_render_pass(framebuffers[image_num].clone(), false, clear_values)
|
||||
.unwrap()
|
||||
|
||||
// We are now inside the first subpass of the render pass. We add a draw command.
|
||||
//
|
||||
// The last two parameters contain the list of resources to pass to the shaders.
|
||||
// Since we used an `EmptyPipeline` object, the objects have to be `()`.
|
||||
.draw(pipeline.clone(), &dynamic_state, vertex_buffer.clone(), (), ())
|
||||
.unwrap()
|
||||
.draw(line_pipeline.clone(), &dynamic_state, line_vertex_buffer.clone(), (), ())
|
||||
.unwrap()
|
||||
|
||||
// We leave the render pass by calling `draw_end`. Note that if we had multiple
|
||||
// subpasses we could have called `next_inline` (or `next_secondary`) to jump to the
|
||||
// next subpass.
|
||||
.end_render_pass()
|
||||
.unwrap()
|
||||
|
||||
// Finish building the command buffer by calling `build`.
|
||||
.build().unwrap();
|
||||
|
||||
let future = previous_frame_end.join(acquire_future)
|
||||
.then_execute(queue.clone(), command_buffer).unwrap()
|
||||
|
||||
// The color output is now expected to contain our triangle. But in order to show it on
|
||||
// the screen, we have to *present* the image by calling `present`.
|
||||
//
|
||||
// This function does not actually present the image immediately. Instead it submits a
|
||||
// present command at the end of the queue. This means that it will only be presented once
|
||||
// the GPU has finished executing the command buffer that draws the triangle.
|
||||
.then_swapchain_present(queue.clone(), swapchain.clone(), image_num)
|
||||
.then_signal_fence_and_flush();
|
||||
|
||||
match future {
|
||||
Ok(future) => {
|
||||
previous_frame_end = Box::new(future) as Box<_>;
|
||||
}
|
||||
Err(FlushError::OutOfDate) => {
|
||||
recreate_swapchain = true;
|
||||
previous_frame_end = Box::new(sync::now(device.clone())) as Box<_>;
|
||||
}
|
||||
Err(e) => {
|
||||
println!("{:?}", e);
|
||||
previous_frame_end = Box::new(sync::now(device.clone())) as Box<_>;
|
||||
}
|
||||
}
|
||||
|
||||
// Note that in more complex programs it is likely that one of `acquire_next_image`,
|
||||
// `command_buffer::submit`, or `present` will block for some time. This happens when the
|
||||
// GPU's queue is full and the driver has to wait until the GPU finished some work.
|
||||
//
|
||||
// Unfortunately the Vulkan API doesn't provide any way to not wait or to detect when a
|
||||
// wait would happen. Blocking may be the desired behavior, but if you don't want to
|
||||
// block you should spawn a separate thread dedicated to submissions.
|
||||
|
||||
// Handling the window events in order to close the program when the user wants to close
|
||||
// it.
|
||||
let mut done = false;
|
||||
events_loop.poll_events(|ev| {
|
||||
match ev {
|
||||
Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => done = true,
|
||||
Event::WindowEvent { event: WindowEvent::Resized(_), .. } => recreate_swapchain = true,
|
||||
_ => ()
|
||||
}
|
||||
});
|
||||
if done { return; }
|
||||
}
|
||||
}
|
||||
|
||||
/// This method is called once during initialization, then again whenever the window is resized
|
||||
fn window_size_dependent_setup(
|
||||
images: &[Arc<SwapchainImage<Window>>],
|
||||
render_pass: Arc<dyn RenderPassAbstract + Send + Sync>,
|
||||
dynamic_state: &mut DynamicState
|
||||
) -> Vec<Arc<dyn FramebufferAbstract + Send + Sync>> {
|
||||
let dimensions = images[0].dimensions();
|
||||
|
||||
let viewport = Viewport {
|
||||
origin: [0.0, 0.0],
|
||||
dimensions: [dimensions[0] as f32, dimensions[1] as f32],
|
||||
depth_range: 0.0 .. 1.0,
|
||||
};
|
||||
dynamic_state.viewports = Some(vec!(viewport));
|
||||
|
||||
images.iter().map(|image| {
|
||||
Arc::new(
|
||||
Framebuffer::start(render_pass.clone())
|
||||
.add(image.clone()).unwrap()
|
||||
.build().unwrap()
|
||||
) as Arc<dyn FramebufferAbstract + Send + Sync>
|
||||
}).collect::<Vec<_>>()
|
||||
}
|
||||
Reference in New Issue
Block a user