refactor 2

This commit is contained in:
2019-07-30 15:17:52 +02:00
parent 5a67eb1042
commit 0f837ce65e
2 changed files with 142 additions and 125 deletions

View File

@@ -2,7 +2,7 @@ use winit::{Event};
use cgmath::{Matrix4, Rad, Vector3, Deg, Quaternion, Rotation3, One, Rotation, SquareMatrix};
mod vulkan;
use crate::vulkan::{GameData, Game, LinePoint, GameObject, VulkanRenderer};
use crate::vulkan::{GameData, Game, LinePoint, GameObject, VulkanRenderer, RenderLoopResult};
mod input;
use crate::input::{InputState};
@@ -100,5 +100,13 @@ fn main() {
log_config.vulkan_validation_layers,
);
renderer.upload_mesh(mesh::load_mesh("models/cube.dae", true).into_iter().nth(0).unwrap());
renderer.render_loop(&mut game);
let mut continue_rendering = true;
while continue_rendering {
match renderer.render_loop(&mut game) {
RenderLoopResult::Ok => {},
RenderLoopResult::Quit => continue_rendering = false,
}
}
}

View File

@@ -34,6 +34,7 @@ use vs::ty::PushConstants;
use line_vs::ty::LinePushConstants;
use crate::mesh::CPUMesh;
use crate::vulkan::RenderLoopResult::Quit;
const VALIDATION_LAYERS: &[&str] = &[
"VK_LAYER_LUNARG_standard_validation"
@@ -97,7 +98,14 @@ pub struct VulkanRenderer {
pub render_pass: Arc<RenderPassAbstract + Send + Sync>,
pub queue: Arc<Queue>,
pub events_loop: EventsLoop,
pub recreate_swapchain: bool,
pub debug_callback: Option<DebugCallback>,
pub previous_frame_end: Option<Box<GpuFuture>>,
}
pub enum RenderLoopResult {
Ok,
Quit
}
impl VulkanRenderer {
@@ -273,145 +281,146 @@ impl VulkanRenderer {
// can draw we also need to create the actual framebuffers.
let framebuffers = window_size_dependent_setup(device.clone(), &images, render_pass.clone(), &mut dynamic_state);
VulkanRenderer { game_data: data, device, framebuffers, dynamic_state, pipeline, line_pipeline,
surface, swapchain, render_pass, queue, line_vertex_buffer, events_loop, debug_callback }
}
pub fn render_loop(self: &mut Self, game: &mut dyn Game) {
let mut recreate_swapchain = false;
// In the loop below we are going to submit commands to the GPU. Submitting a command produces
// an object that implements the `GpuFuture` trait, which holds the resources for as long as
// they are in use by the GPU.
//
// Destroying the `GpuFuture` blocks until the GPU is finished executing it. In order to avoid
// that, we store the submission of the previous frame here.
let mut previous_frame_end = Box::new(sync::now(self.device.clone())) as Box<dyn GpuFuture>;
let previous_frame_end = Some(Box::new(sync::now(device.clone())) as Box<dyn GpuFuture>);
loop {
// It is important to call this function from time to time, otherwise resources will keep
// accumulating and you will eventually reach an out of memory error.
// Calling this function polls various fences in order to determine what the GPU has
// already processed, and frees the resources that are no longer needed.
previous_frame_end.cleanup_finished();
VulkanRenderer { game_data: data, device, framebuffers, dynamic_state, pipeline, line_pipeline,
surface, swapchain, render_pass, queue, line_vertex_buffer, events_loop,
recreate_swapchain: false, debug_callback, previous_frame_end }
}
if recreate_swapchain {
let window = self.surface.window();
self.game_data.dimensions = if let Some(dimensions) = window.get_inner_size() {
let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into();
[dimensions.0, dimensions.1]
} else {
return;
};
pub fn render_loop(self: &mut Self, game: &mut dyn Game) -> RenderLoopResult {
// It is important to call this function from time to time, otherwise resources will keep
// accumulating and you will eventually reach an out of memory error.
// Calling this function polls various fences in order to determine what the GPU has
// already processed, and frees the resources that are no longer needed.
self.previous_frame_end.as_mut().unwrap().cleanup_finished();
let (new_swapchain, new_images) = match self.swapchain.recreate_with_dimension(self.game_data.dimensions) {
Ok(r) => r,
// This error tends to happen when the user is manually resizing the window.
// Simply restarting the loop is the easiest way to fix this issue.
Err(SwapchainCreationError::UnsupportedDimensions) => continue,
Err(err) => panic!("{:?}", err)
};
if self.recreate_swapchain {
let window = self.surface.window();
self.game_data.dimensions = if let Some(dimensions) = window.get_inner_size() {
let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into();
[dimensions.0, dimensions.1]
} else {
return RenderLoopResult::Ok;
};
self.swapchain = new_swapchain;
// Because framebuffers contains an Arc on the old swapchain, we need to
// recreate framebuffers as well.
self.framebuffers = window_size_dependent_setup(self.device.clone(), &new_images, self.render_pass.clone(), &mut self.dynamic_state);
recreate_swapchain = false;
}
if self.game_data.recreate_pipeline {
if let Some(pipeline_ok) = create_pipeline::<Vertex>(self.device.clone(), self.render_pass.clone(), "shaders/triangle.vert", "shaders/triangle.frag", false) {
self.pipeline = pipeline_ok;
println!("Updated pipeline.");
} else {
println!("Failed to update pipeline.");
}
self.game_data.recreate_pipeline = false;
}
// Before we can draw on the output, we have to *acquire* an image from the swapchain. If
// no image is available (which happens if you submit draw commands too quickly), then the
// function will block.
// This operation returns the index of the image that we are allowed to draw upon.
//
// This function can block if no image is available. The parameter is an optional timeout
// after which the function call will return an error.
let (image_num, acquire_future) = match swapchain::acquire_next_image(self.swapchain.clone(), None) {
let (new_swapchain, new_images) = match self.swapchain.recreate_with_dimension(self.game_data.dimensions) {
Ok(r) => r,
Err(AcquireError::OutOfDate) => {
recreate_swapchain = true;
continue;
},
// This error tends to happen when the user is manually resizing the window.
// Simply restarting the loop is the easiest way to fix this issue.
Err(SwapchainCreationError::UnsupportedDimensions) => return RenderLoopResult::Ok,
Err(err) => panic!("{:?}", err)
};
game.update(&mut self.game_data);
self.swapchain = new_swapchain;
// Because framebuffers contains an Arc on the old swapchain, we need to
// recreate framebuffers as well.
self.framebuffers = window_size_dependent_setup(self.device.clone(), &new_images, self.render_pass.clone(), &mut self.dynamic_state);
let mut cbb = AutoCommandBufferBuilder::primary_one_time_submit(self.device.clone(), self.queue.family()).unwrap()
// Before we can draw, we have to *enter a render pass*. There are two methods to do
// this: `draw_inline` and `draw_secondary`. The latter is a bit more advanced and is
// not covered here.
.begin_render_pass(self.framebuffers[image_num].clone(), false, vec![[0.0, 0.0, 0.0, 1.0].into(), ClearValue::Depth(1.0)]).unwrap();
// We are now inside the first subpass of the render pass
for i in 0..self.game_data.game_objects.len() {
let game_object = &self.game_data.game_objects[i];
let mesh = &self.game_data.meshes[game_object.mesh_index];
self.game_data.push_constants.model = game_object.model_matrix.into();
cbb = cbb.draw_indexed(self.pipeline.clone(), &self.dynamic_state,
vec![mesh.vertex_buffer.clone()],
mesh.index_buffer.clone(),
(), self.game_data.push_constants.clone()).unwrap();
}
cbb = cbb.draw(self.line_pipeline.clone(), &self.dynamic_state, vec![self.line_vertex_buffer.clone()], (), self.game_data.line_push_constants.clone()).unwrap()
// We leave the render pass by calling `draw_end`. Note that if we had multiple
// subpasses we could have called `next_inline` (or `next_secondary`) to jump to the
// next subpass.
.end_render_pass().unwrap();
let command_buffer = cbb.build().unwrap();
let future = previous_frame_end.join(acquire_future)
.then_execute(self.queue.clone(), command_buffer).unwrap()
.then_swapchain_present(self.queue.clone(), self.swapchain.clone(), image_num)
.then_signal_fence_and_flush();
match future {
Ok(future) => {
previous_frame_end = Box::new(future) as Box<_>;
}
Err(FlushError::OutOfDate) => {
recreate_swapchain = true;
previous_frame_end = Box::new(sync::now(self.device.clone())) as Box<_>;
}
Err(e) => {
println!("{:?}", e);
previous_frame_end = Box::new(sync::now(self.device.clone())) as Box<_>;
}
}
// Note that in more complex programs it is likely that one of `acquire_next_image`,
// `command_buffer::submit`, or `present` will block for some time. This happens when the
// GPU's queue is full and the driver has to wait until the GPU finished some work.
//
// Unfortunately the Vulkan API doesn't provide any way to not wait or to detect when a
// wait would happen. Blocking may be the desired behavior, but if you don't want to
// block you should spawn a separate thread dedicated to submissions.
let mut window_closed = false;
self.events_loop.poll_events(|ev| {
game.on_window_event(&ev);
match ev {
Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => window_closed = true,
Event::WindowEvent { event: WindowEvent::Resized(_), .. } => recreate_swapchain = true,
_ => {}
}
});
if self.game_data.shutdown || window_closed { return; }
self.recreate_swapchain = false;
}
if self.game_data.recreate_pipeline {
if let Some(pipeline_ok) = create_pipeline::<Vertex>(self.device.clone(), self.render_pass.clone(), "shaders/triangle.vert", "shaders/triangle.frag", false) {
self.pipeline = pipeline_ok;
println!("Updated pipeline.");
} else {
println!("Failed to update pipeline.");
}
self.game_data.recreate_pipeline = false;
}
// Before we can draw on the output, we have to *acquire* an image from the swapchain. If
// no image is available (which happens if you submit draw commands too quickly), then the
// function will block.
// This operation returns the index of the image that we are allowed to draw upon.
//
// This function can block if no image is available. The parameter is an optional timeout
// after which the function call will return an error.
let (image_num, acquire_future) = match swapchain::acquire_next_image(self.swapchain.clone(), None) {
Ok(r) => r,
Err(AcquireError::OutOfDate) => {
self.recreate_swapchain = true;
return RenderLoopResult::Ok;
},
Err(err) => panic!("{:?}", err)
};
game.update(&mut self.game_data);
let mut cbb = AutoCommandBufferBuilder::primary_one_time_submit(self.device.clone(), self.queue.family()).unwrap()
// Before we can draw, we have to *enter a render pass*. There are two methods to do
// this: `draw_inline` and `draw_secondary`. The latter is a bit more advanced and is
// not covered here.
.begin_render_pass(self.framebuffers[image_num].clone(), false, vec![[0.0, 0.0, 0.0, 1.0].into(), ClearValue::Depth(1.0)]).unwrap();
// We are now inside the first subpass of the render pass
for i in 0..self.game_data.game_objects.len() {
let game_object = &self.game_data.game_objects[i];
let mesh = &self.game_data.meshes[game_object.mesh_index];
self.game_data.push_constants.model = game_object.model_matrix.into();
cbb = cbb.draw_indexed(self.pipeline.clone(), &self.dynamic_state,
vec![mesh.vertex_buffer.clone()],
mesh.index_buffer.clone(),
(), self.game_data.push_constants.clone()).unwrap();
}
cbb = cbb.draw(self.line_pipeline.clone(), &self.dynamic_state, vec![self.line_vertex_buffer.clone()], (), self.game_data.line_push_constants.clone()).unwrap()
// We leave the render pass by calling `draw_end`. Note that if we had multiple
// subpasses we could have called `next_inline` (or `next_secondary`) to jump to the
// next subpass.
.end_render_pass().unwrap();
let command_buffer = cbb.build().unwrap();
let future = self.previous_frame_end.take().unwrap().join(acquire_future)
.then_execute(self.queue.clone(), command_buffer).unwrap()
.then_swapchain_present(self.queue.clone(), self.swapchain.clone(), image_num)
.then_signal_fence_and_flush();
match future {
Ok(future) => {
self.previous_frame_end = Some(Box::new(future) as Box<_>);
},
Err(FlushError::OutOfDate) => {
self.recreate_swapchain = true;
self.previous_frame_end = Some(Box::new(sync::now(self.device.clone())) as Box<_>);
}
Err(e) => {
println!("{:?}", e);
self.previous_frame_end = Some(Box::new(sync::now(self.device.clone())) as Box<_>);
}
};
// Note that in more complex programs it is likely that one of `acquire_next_image`,
// `command_buffer::submit`, or `present` will block for some time. This happens when the
// GPU's queue is full and the driver has to wait until the GPU finished some work.
//
// Unfortunately the Vulkan API doesn't provide any way to not wait or to detect when a
// wait would happen. Blocking may be the desired behavior, but if you don't want to
// block you should spawn a separate thread dedicated to submissions.
let mut window_closed = false;
let mut resized = false;
self.events_loop.poll_events(|ev| {
game.on_window_event(&ev);
match ev {
Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => window_closed = true,
Event::WindowEvent { event: WindowEvent::Resized(_), .. } => resized = true,
_ => {}
}
});
if resized { self.recreate_swapchain = true }
if self.game_data.shutdown || window_closed { return Quit; }
RenderLoopResult::Ok
}
pub fn upload_mesh(self: &mut Self, mesh: CPUMesh) -> usize {