This commit is contained in:
2019-07-30 12:36:19 +02:00
parent e01ff8d395
commit 5a67eb1042
3 changed files with 380 additions and 336 deletions

View File

@@ -2,7 +2,7 @@ use winit::{Event};
use cgmath::{Matrix4, Rad, Vector3, Deg, Quaternion, Rotation3, One, Rotation, SquareMatrix};
mod vulkan;
use crate::vulkan::{GameData, Game, LinePoint, GameObject};
use crate::vulkan::{GameData, Game, LinePoint, GameObject, VulkanRenderer};
mod input;
use crate::input::{InputState};
@@ -10,16 +10,18 @@ use crate::input::{InputState};
mod config;
use crate::config::LogConfig;
mod mesh;
struct TestGame<'a> {
input: InputState<'a>,
cam_position: Vector3<f32>,
cam_rotation: Quaternion<f32>,
log_config: &'a LogConfig,
}
impl Game for TestGame<'_> {
fn validation_layers_enabled(self: &Self) -> bool {
self.log_config.vulkan_validation_layers
fn game_start(self: &mut Self, _game_data: &mut GameData) {
println!("Game started.");
// let player_mesh = init_data.upload_mesh(mesh::load_mesh("models/iski51.dae").into_iter().nth(0).unwrap());
}
fn update(self: &mut Self, game_data: &mut GameData) {
@@ -53,8 +55,6 @@ impl Game for TestGame<'_> {
self.input.get_axis("move_forward") * 0.05));
// Move game objects
let model = Matrix4::from_angle_z(Rad::from(Deg(game_data.push_constants.time * 100.0)));
let view = Matrix4::from(self.cam_rotation) * Matrix4::from_translation(self.cam_position);
let mut proj = cgmath::perspective(
@@ -66,7 +66,6 @@ impl Game for TestGame<'_> {
proj.y.y *= -1.0;
game_data.push_constants.model = model.into();
game_data.push_constants.view = view.into();
game_data.push_constants.projection = proj.into();
game_data.line_push_constants.view = view.into();
@@ -87,12 +86,10 @@ fn main() {
input: InputState::new("config/input.toml", &log_config),
cam_rotation: Quaternion::one(),
cam_position: Vector3::new(0.0, 0.0, -10.0),
log_config: &log_config,
};
let line_count = 30;
vulkan::init(
vec!["models/cube.dae"],
let mut renderer = VulkanRenderer::init(
(-line_count..=line_count)
.flat_map(|it| vec![
LinePoint { position: [it as f32, -line_count as f32, 0.] },
@@ -100,6 +97,8 @@ fn main() {
LinePoint { position: [-line_count as f32, it as f32, 0.] },
LinePoint { position: [line_count as f32, it as f32, 0.] },
]).collect(),
&mut game
log_config.vulkan_validation_layers,
);
renderer.upload_mesh(mesh::load_mesh("models/cube.dae", true).into_iter().nth(0).unwrap());
renderer.render_loop(&mut game);
}

62
src/mesh.rs Normal file
View File

@@ -0,0 +1,62 @@
use crate::vulkan::Vertex;
use std::path::Path;
pub struct CPUMesh {
pub(crate) vertices: Vec<Vertex>,
pub(crate) indices: Vec<u32>,
}
pub fn load_mesh(mesh_path: &str, print_status: bool) -> Vec<CPUMesh> {
struct TempVertex {
pos: Option<[f32; 3]>,
uv: Option<[f32; 2]>,
normal: Option<[f32; 3]>,
}
if print_status {
println!("Start loading file {}", mesh_path);
}
let file = collada::document::ColladaDocument::from_path(Path::new(mesh_path)).unwrap();
file.get_obj_set().unwrap().objects.iter().map(|model| {
if print_status {
println!("Loading mesh {}: {} Vertices", model.name, model.vertices.len());
}
let mut vertices: Vec<TempVertex> = model.vertices.iter().map(|v| {
TempVertex {
pos: Some([v.x as f32, v.y as f32, v.z as f32]),
uv: None,
normal: None
}
}).collect();
let mut indices = Vec::new();
model.geometry.iter().for_each(|geometry| geometry.mesh.iter().for_each(|primitive| {
if let collada::PrimitiveElement::Triangles(tris) = primitive {
tris.vertices.iter().for_each(|tri| {
[tri.0, tri.1, tri.2].iter().for_each(|(vertex_index, texture_position_index, normal_index)| {
indices.push(*vertex_index as u32);
vertices[*vertex_index].uv = texture_position_index.or(None).map(|tpi| {
let tex_vertex = model.tex_vertices[tpi];
[tex_vertex.x as f32, 1.0 - tex_vertex.y as f32]
});
vertices[*vertex_index].normal = normal_index.or(None).map(|ni| {
let normal = model.normals[ni];
[normal.x as f32, normal.y as f32, normal.z as f32]
});
});
});
} else {
panic!("Mesh format Polylist not supported!");
}
}));
let finished_vertices = vertices.iter().map(|v| Vertex {
position: v.pos.unwrap(),
uv: v.uv.unwrap(),
normal: v.normal.unwrap(),
}).collect();
CPUMesh { vertices: finished_vertices, indices }
}).collect()
}

View File

@@ -1,20 +1,19 @@
use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer};
use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState};
use vulkano::device::{Device, DeviceExtensions};
use vulkano::device::{Device, DeviceExtensions, Queue};
use vulkano::framebuffer::{Framebuffer, FramebufferAbstract, Subpass, RenderPassAbstract};
use vulkano::image::{SwapchainImage, AttachmentImage, ImageUsage};
use vulkano::instance::{Instance, PhysicalDevice, ApplicationInfo, Version, InstanceExtensions};
use vulkano::pipeline::{GraphicsPipeline};
use vulkano::pipeline::{GraphicsPipeline, GraphicsPipelineAbstract};
use vulkano::pipeline::shader::{GraphicsShaderType, ShaderModule};
use vulkano::pipeline::viewport::Viewport;
use vulkano::swapchain::{AcquireError, PresentMode, SurfaceTransform, Swapchain, SwapchainCreationError};
use vulkano::swapchain::{AcquireError, PresentMode, SurfaceTransform, Swapchain, SwapchainCreationError, Surface};
use vulkano::swapchain;
use vulkano::sync::{GpuFuture, FlushError};
use vulkano::sync;
use vulkano::pipeline::vertex::{SingleBufferDefinition};
use vulkano::descriptor::PipelineLayoutAbstract;
use vulkano::format::{Format, ClearValue};
use vulkano::instance::debug::{DebugCallback, MessageTypes};
use vulkano::memory::pool::{PotentialDedicatedAllocation, StdMemoryPoolAlloc};
use vulkano_win::VkSurfaceBuild;
@@ -22,7 +21,7 @@ use winit::{EventsLoop, Window, WindowBuilder, Event, WindowEvent};
use std::sync::Arc;
use std::time::SystemTime;
use std::path::{PathBuf, Path};
use std::path::{PathBuf};
use std::ffi::{CStr};
use cgmath::{Matrix4, SquareMatrix};
@@ -34,7 +33,7 @@ use shaderc;
use vs::ty::PushConstants;
use line_vs::ty::LinePushConstants;
use collada;
use crate::mesh::CPUMesh;
const VALIDATION_LAYERS: &[&str] = &[
"VK_LAYER_LUNARG_standard_validation"
@@ -55,7 +54,7 @@ pub struct LinePoint {
vulkano::impl_vertex!(LinePoint, position);
pub trait Game {
fn validation_layers_enabled(self: &Self) -> bool;
fn game_start(self: &mut Self, game_data: &mut GameData);
fn update(self: &mut Self, game_data: &mut GameData);
@@ -85,308 +84,341 @@ pub struct GameData {
pub meshes: Vec<Mesh>,
}
pub fn init(mesh_paths: Vec<&str>, line_vertices: Vec<LinePoint>, game: &mut dyn Game) {
let mut data = GameData {
push_constants: PushConstants {
time: 0.0,
_dummy0: [0; 12],
model: Matrix4::identity().into(),
view: Matrix4::identity().into(),
projection: Matrix4::identity().into(),
},
line_push_constants: LinePushConstants {
model: Matrix4::identity().into(),
view: Matrix4::identity().into(),
projection: Matrix4::identity().into(),
},
start_time: SystemTime::now(),
recreate_pipeline: false,
shutdown: false,
line_vertices,
dimensions: [0, 0],
meshes: vec![],
game_objects: vec![],
};
pub struct VulkanRenderer {
pub game_data: GameData,
pub device: Arc<Device>,
pub framebuffers: Vec<Arc<FramebufferAbstract + Send + Sync>>,
pub dynamic_state: DynamicState,
pub pipeline: Arc<GraphicsPipelineAbstract + Send + Sync>,
pub line_pipeline: Arc<GraphicsPipelineAbstract + Send + Sync>,
pub line_vertex_buffer: Arc<CpuAccessibleBuffer<[LinePoint], PotentialDedicatedAllocation<StdMemoryPoolAlloc>>>,
pub surface: Arc<Surface<Window>>,
pub swapchain: Arc<Swapchain<Window>>,
pub render_pass: Arc<RenderPassAbstract + Send + Sync>,
pub queue: Arc<Queue>,
pub events_loop: EventsLoop,
pub debug_callback: Option<DebugCallback>,
}
if game.validation_layers_enabled() {
println!("Enabling validation layers...");
}
let instance = {
let extensions = InstanceExtensions {
ext_debug_report: true,
..vulkano_win::required_extensions()
impl VulkanRenderer {
pub fn init(line_vertices: Vec<LinePoint>, enable_validation_layers: bool) -> VulkanRenderer {
let mut data = GameData {
push_constants: PushConstants {
time: 0.0,
_dummy0: [0; 12],
model: Matrix4::identity().into(),
view: Matrix4::identity().into(),
projection: Matrix4::identity().into(),
},
line_push_constants: LinePushConstants {
model: Matrix4::identity().into(),
view: Matrix4::identity().into(),
projection: Matrix4::identity().into(),
},
start_time: SystemTime::now(),
recreate_pipeline: false,
shutdown: false,
line_vertices,
dimensions: [0, 0],
meshes: vec![],
game_objects: vec![],
};
let app_info = ApplicationInfo {
application_name: Some("Asuro Editor".into()),
application_version: Some(Version { major: 0, minor: 1, patch: 0 }),
engine_name: Some("Asuro Rust Engine".into()),
engine_version: Some(Version { major: 0, minor: 1, patch: 0 })
};
if game.validation_layers_enabled() {
let available_layers = vulkano::instance::layers_list().unwrap().map(|layer| String::from(layer.name())).collect::<Vec<String>>();
VALIDATION_LAYERS.iter().for_each(|wanted_layer_name| {
if !available_layers.iter().any(|available_layer_name| available_layer_name == wanted_layer_name) {
panic!("Validation layer not found: {:?}. Available layers: {:?}", wanted_layer_name, &available_layers.join(", "));
}
});
Instance::new(Some(&app_info), &extensions, VALIDATION_LAYERS.iter().cloned()).expect("failed to create Vulkan instance")
} else {
Instance::new(Some(&app_info), &extensions, None).expect("failed to create Vulkan instance")
if enable_validation_layers {
println!("Enabling validation layers...");
}
};
// lifetime of this is important, even tho it isn't used!
let mut _debug_callback = None;
if game.validation_layers_enabled() {
let msg_types = MessageTypes {
error: true,
warning: true,
performance_warning: true,
information: false,
debug: true,
};
_debug_callback = DebugCallback::new(&instance, msg_types, |msg| {
let type_str = match (msg.ty.error, msg.ty.warning, msg.ty.performance_warning, msg.ty.information, msg.ty.debug) {
(true, _, _, _, _) => "!!",
(_, true, _, _, _) => "!",
(_, _, true, _, _) => "p",
(_, _, _, true, _) => "i",
_ => " "
let instance = {
let extensions = InstanceExtensions {
ext_debug_report: true,
..vulkano_win::required_extensions()
};
let layer_str = msg.layer_prefix;
let app_info = ApplicationInfo {
application_name: Some("Asuro Editor".into()),
application_version: Some(Version { major: 0, minor: 1, patch: 0 }),
engine_name: Some("Asuro Rust Engine".into()),
engine_version: Some(Version { major: 0, minor: 1, patch: 0 })
};
println!("[{}][{}]: {}", type_str, layer_str, msg.description);
}).ok();
}
if enable_validation_layers {
let available_layers = vulkano::instance::layers_list().unwrap().map(|layer| String::from(layer.name())).collect::<Vec<String>>();
let physical = PhysicalDevice::enumerate(&instance).next().unwrap();
println!("Using device: {} (type: {:?})", physical.name(), physical.ty());
VALIDATION_LAYERS.iter().for_each(|wanted_layer_name| {
if !available_layers.iter().any(|available_layer_name| available_layer_name == wanted_layer_name) {
panic!("Validation layer not found: {:?}. Available layers: {:?}", wanted_layer_name, &available_layers.join(", "));
}
});
let mut events_loop = EventsLoop::new();
let surface = WindowBuilder::new().build_vk_surface(&events_loop, instance.clone()).unwrap();
let window = surface.window();
// In a real-life application, we would probably use at least a graphics queue and a transfers
// queue to handle data transfers in parallel. In this example we only use one queue.
let queue_family = physical.queue_families().find(|&q| {
q.supports_graphics() && surface.is_supported(q).unwrap_or(false)
}).unwrap();
let device_ext = DeviceExtensions { khr_swapchain: true, .. DeviceExtensions::none() };
let (device, mut queues) = Device::new(physical, physical.supported_features(), &device_ext,
[(queue_family, 0.5)].iter().cloned()).unwrap();
let queue = queues.next().unwrap();
let (mut swapchain, images) = {
let caps = surface.capabilities(physical).unwrap();
let usage = caps.supported_usage_flags;
// The alpha mode indicates how the alpha value of the final image will behave. For example
// you can choose whether the window will be opaque or transparent.
let alpha = caps.supported_composite_alpha.iter().next().unwrap();
// Choosing the internal format that the images will have.
let format = caps.supported_formats[0].0;
// The dimensions of the window, only used to initially setup the swapchain.
// NOTE:
// On some drivers the swapchain dimensions are specified by `caps.current_extent` and the
// swapchain size must use these dimensions.
// These dimensions are always the same as the window dimensions
//
// However other drivers dont specify a value i.e. `caps.current_extent` is `None`
// These drivers will allow anything but the only sensible value is the window dimensions.
//
// Because for both of these cases, the swapchain needs to be the window dimensions, we just use that.
data.dimensions = if let Some(dimensions) = window.get_inner_size() {
let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into();
[dimensions.0, dimensions.1]
} else {
panic!("Couldn't get window dimensions!");
Instance::new(Some(&app_info), &extensions, VALIDATION_LAYERS.iter().cloned()).expect("failed to create Vulkan instance")
} else {
Instance::new(Some(&app_info), &extensions, None).expect("failed to create Vulkan instance")
}
};
Swapchain::new(device.clone(), surface.clone(), caps.min_image_count, format,
data.dimensions, 1, usage, &queue, SurfaceTransform::Identity, alpha,
PresentMode::Fifo, true, None).unwrap()
};
// lifetime of this is important, even tho it isn't used!
let mut debug_callback = None;
if enable_validation_layers {
let msg_types = MessageTypes {
error: true,
warning: true,
performance_warning: true,
information: false,
debug: true,
};
mesh_paths.iter().flat_map(|path| load_mesh(device.clone(), path)).for_each(|mesh| data.meshes.push(mesh));
debug_callback = DebugCallback::new(&instance, msg_types, |msg| {
let type_str = match (msg.ty.error, msg.ty.warning, msg.ty.performance_warning, msg.ty.information, msg.ty.debug) {
(true, _, _, _, _) => "!!",
(_, true, _, _, _) => "!",
(_, _, true, _, _) => "p",
(_, _, _, true, _) => "i",
_ => " "
};
let line_vertex_buffer = CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::vertex_buffer(), data.line_vertices.iter().cloned()).unwrap();
let layer_str = msg.layer_prefix;
let render_pass = Arc::new(vulkano::single_pass_renderpass!(
device.clone(),
attachments: {
color: {
load: Clear,
store: Store,
format: swapchain.format(),
samples: 1,
},
depth: {
load: Clear,
store: DontCare,
format: Format::D16Unorm,
samples: 1,
initial_layout: ImageLayout::Undefined,
final_layout: ImageLayout::DepthStencilAttachmentOptimal,
}
},
pass: {
color: [color],
depth_stencil: {depth}
println!("[{}][{}]: {}", type_str, layer_str, msg.description);
}).ok();
}
).unwrap());
let sub_pass = Subpass::from(render_pass.clone(), 0).unwrap();
let physical = PhysicalDevice::enumerate(&instance).next().unwrap();
println!("Using device: {} (type: {:?})", physical.name(), physical.ty());
let mut pipeline = create_pipeline(device.clone(), sub_pass.clone(), "shaders/triangle.vert", "shaders/triangle.frag", false).unwrap();
let line_pipeline = create_pipeline(device.clone(), sub_pass.clone(), "shaders/line.vert", "shaders/line.frag", true ).unwrap();
let events_loop = EventsLoop::new();
let surface = WindowBuilder::new().build_vk_surface(&events_loop, instance.clone()).unwrap();
let window = surface.window();
// Dynamic viewports allow us to recreate just the viewport when the window is resized
// Otherwise we would have to recreate the whole pipeline.
let mut dynamic_state = DynamicState { line_width: None, viewports: None, scissors: None };
// In a real-life application, we would probably use at least a graphics queue and a transfers
// queue to handle data transfers in parallel. In this example we only use one queue.
let queue_family = physical.queue_families().find(|&q| {
q.supports_graphics() && surface.is_supported(q).unwrap_or(false)
}).unwrap();
// The render pass we created above only describes the layout of our framebuffers. Before we
// can draw we also need to create the actual framebuffers.
let mut framebuffers = window_size_dependent_setup(device.clone(), &images, render_pass.clone(), &mut dynamic_state);
let device_ext = DeviceExtensions { khr_swapchain: true, ..DeviceExtensions::none() };
let (device, mut queues) = Device::new(physical, physical.supported_features(), &device_ext,
[(queue_family, 0.5)].iter().cloned()).unwrap();
let queue = queues.next().unwrap();
let mut recreate_swapchain = false;
let (swapchain, images) = {
let caps = surface.capabilities(physical).unwrap();
// In the loop below we are going to submit commands to the GPU. Submitting a command produces
// an object that implements the `GpuFuture` trait, which holds the resources for as long as
// they are in use by the GPU.
//
// Destroying the `GpuFuture` blocks until the GPU is finished executing it. In order to avoid
// that, we store the submission of the previous frame here.
let mut previous_frame_end = Box::new(sync::now(device.clone())) as Box<dyn GpuFuture>;
let usage = caps.supported_usage_flags;
loop {
// It is important to call this function from time to time, otherwise resources will keep
// accumulating and you will eventually reach an out of memory error.
// Calling this function polls various fences in order to determine what the GPU has
// already processed, and frees the resources that are no longer needed.
previous_frame_end.cleanup_finished();
// The alpha mode indicates how the alpha value of the final image will behave. For example
// you can choose whether the window will be opaque or transparent.
let alpha = caps.supported_composite_alpha.iter().next().unwrap();
if recreate_swapchain {
// Choosing the internal format that the images will have.
let format = caps.supported_formats[0].0;
// The dimensions of the window, only used to initially setup the swapchain.
// NOTE:
// On some drivers the swapchain dimensions are specified by `caps.current_extent` and the
// swapchain size must use these dimensions.
// These dimensions are always the same as the window dimensions
//
// However other drivers dont specify a value i.e. `caps.current_extent` is `None`
// These drivers will allow anything but the only sensible value is the window dimensions.
//
// Because for both of these cases, the swapchain needs to be the window dimensions, we just use that.
data.dimensions = if let Some(dimensions) = window.get_inner_size() {
let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into();
[dimensions.0, dimensions.1]
} else {
return;
panic!("Couldn't get window dimensions!");
};
let (new_swapchain, new_images) = match swapchain.recreate_with_dimension(data.dimensions) {
Swapchain::new(device.clone(), surface.clone(), caps.min_image_count, format,
data.dimensions, 1, usage, &queue, SurfaceTransform::Identity, alpha,
PresentMode::Fifo, true, None).unwrap()
};
let line_vertex_buffer = CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::vertex_buffer(), data.line_vertices.iter().cloned()).unwrap();
let render_pass = Arc::new(vulkano::single_pass_renderpass!(
device.clone(),
attachments: {
color: {
load: Clear,
store: Store,
format: swapchain.format(),
samples: 1,
},
depth: {
load: Clear,
store: DontCare,
format: Format::D16Unorm,
samples: 1,
initial_layout: ImageLayout::Undefined,
final_layout: ImageLayout::DepthStencilAttachmentOptimal,
}
},
pass: {
color: [color],
depth_stencil: {depth}
}
).unwrap());
let pipeline: Arc<GraphicsPipelineAbstract + Send + Sync> =
create_pipeline::<Vertex>(device.clone(), render_pass.clone(), "shaders/triangle.vert", "shaders/triangle.frag", false).unwrap();
let line_pipeline: Arc<GraphicsPipelineAbstract + Send + Sync> =
create_pipeline::<LinePoint>(device.clone(), render_pass.clone(), "shaders/line.vert", "shaders/line.frag", true).unwrap();
// Dynamic viewports allow us to recreate just the viewport when the window is resized
// Otherwise we would have to recreate the whole pipeline.
let mut dynamic_state = DynamicState { line_width: None, viewports: None, scissors: None };
// The render pass we created above only describes the layout of our framebuffers. Before we
// can draw we also need to create the actual framebuffers.
let framebuffers = window_size_dependent_setup(device.clone(), &images, render_pass.clone(), &mut dynamic_state);
VulkanRenderer { game_data: data, device, framebuffers, dynamic_state, pipeline, line_pipeline,
surface, swapchain, render_pass, queue, line_vertex_buffer, events_loop, debug_callback }
}
pub fn render_loop(self: &mut Self, game: &mut dyn Game) {
let mut recreate_swapchain = false;
// In the loop below we are going to submit commands to the GPU. Submitting a command produces
// an object that implements the `GpuFuture` trait, which holds the resources for as long as
// they are in use by the GPU.
//
// Destroying the `GpuFuture` blocks until the GPU is finished executing it. In order to avoid
// that, we store the submission of the previous frame here.
let mut previous_frame_end = Box::new(sync::now(self.device.clone())) as Box<dyn GpuFuture>;
loop {
// It is important to call this function from time to time, otherwise resources will keep
// accumulating and you will eventually reach an out of memory error.
// Calling this function polls various fences in order to determine what the GPU has
// already processed, and frees the resources that are no longer needed.
previous_frame_end.cleanup_finished();
if recreate_swapchain {
let window = self.surface.window();
self.game_data.dimensions = if let Some(dimensions) = window.get_inner_size() {
let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into();
[dimensions.0, dimensions.1]
} else {
return;
};
let (new_swapchain, new_images) = match self.swapchain.recreate_with_dimension(self.game_data.dimensions) {
Ok(r) => r,
// This error tends to happen when the user is manually resizing the window.
// Simply restarting the loop is the easiest way to fix this issue.
Err(SwapchainCreationError::UnsupportedDimensions) => continue,
Err(err) => panic!("{:?}", err)
};
self.swapchain = new_swapchain;
// Because framebuffers contains an Arc on the old swapchain, we need to
// recreate framebuffers as well.
self.framebuffers = window_size_dependent_setup(self.device.clone(), &new_images, self.render_pass.clone(), &mut self.dynamic_state);
recreate_swapchain = false;
}
if self.game_data.recreate_pipeline {
if let Some(pipeline_ok) = create_pipeline::<Vertex>(self.device.clone(), self.render_pass.clone(), "shaders/triangle.vert", "shaders/triangle.frag", false) {
self.pipeline = pipeline_ok;
println!("Updated pipeline.");
} else {
println!("Failed to update pipeline.");
}
self.game_data.recreate_pipeline = false;
}
// Before we can draw on the output, we have to *acquire* an image from the swapchain. If
// no image is available (which happens if you submit draw commands too quickly), then the
// function will block.
// This operation returns the index of the image that we are allowed to draw upon.
//
// This function can block if no image is available. The parameter is an optional timeout
// after which the function call will return an error.
let (image_num, acquire_future) = match swapchain::acquire_next_image(self.swapchain.clone(), None) {
Ok(r) => r,
// This error tends to happen when the user is manually resizing the window.
// Simply restarting the loop is the easiest way to fix this issue.
Err(SwapchainCreationError::UnsupportedDimensions) => continue,
Err(AcquireError::OutOfDate) => {
recreate_swapchain = true;
continue;
},
Err(err) => panic!("{:?}", err)
};
swapchain = new_swapchain;
// Because framebuffers contains an Arc on the old swapchain, we need to
// recreate framebuffers as well.
framebuffers = window_size_dependent_setup(device.clone(), &new_images, render_pass.clone(), &mut dynamic_state);
game.update(&mut self.game_data);
recreate_swapchain = false;
let mut cbb = AutoCommandBufferBuilder::primary_one_time_submit(self.device.clone(), self.queue.family()).unwrap()
// Before we can draw, we have to *enter a render pass*. There are two methods to do
// this: `draw_inline` and `draw_secondary`. The latter is a bit more advanced and is
// not covered here.
.begin_render_pass(self.framebuffers[image_num].clone(), false, vec![[0.0, 0.0, 0.0, 1.0].into(), ClearValue::Depth(1.0)]).unwrap();
// We are now inside the first subpass of the render pass
for i in 0..self.game_data.game_objects.len() {
let game_object = &self.game_data.game_objects[i];
let mesh = &self.game_data.meshes[game_object.mesh_index];
self.game_data.push_constants.model = game_object.model_matrix.into();
cbb = cbb.draw_indexed(self.pipeline.clone(), &self.dynamic_state,
vec![mesh.vertex_buffer.clone()],
mesh.index_buffer.clone(),
(), self.game_data.push_constants.clone()).unwrap();
}
cbb = cbb.draw(self.line_pipeline.clone(), &self.dynamic_state, vec![self.line_vertex_buffer.clone()], (), self.game_data.line_push_constants.clone()).unwrap()
// We leave the render pass by calling `draw_end`. Note that if we had multiple
// subpasses we could have called `next_inline` (or `next_secondary`) to jump to the
// next subpass.
.end_render_pass().unwrap();
let command_buffer = cbb.build().unwrap();
let future = previous_frame_end.join(acquire_future)
.then_execute(self.queue.clone(), command_buffer).unwrap()
.then_swapchain_present(self.queue.clone(), self.swapchain.clone(), image_num)
.then_signal_fence_and_flush();
match future {
Ok(future) => {
previous_frame_end = Box::new(future) as Box<_>;
}
Err(FlushError::OutOfDate) => {
recreate_swapchain = true;
previous_frame_end = Box::new(sync::now(self.device.clone())) as Box<_>;
}
Err(e) => {
println!("{:?}", e);
previous_frame_end = Box::new(sync::now(self.device.clone())) as Box<_>;
}
}
// Note that in more complex programs it is likely that one of `acquire_next_image`,
// `command_buffer::submit`, or `present` will block for some time. This happens when the
// GPU's queue is full and the driver has to wait until the GPU finished some work.
//
// Unfortunately the Vulkan API doesn't provide any way to not wait or to detect when a
// wait would happen. Blocking may be the desired behavior, but if you don't want to
// block you should spawn a separate thread dedicated to submissions.
let mut window_closed = false;
self.events_loop.poll_events(|ev| {
game.on_window_event(&ev);
match ev {
Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => window_closed = true,
Event::WindowEvent { event: WindowEvent::Resized(_), .. } => recreate_swapchain = true,
_ => {}
}
});
if self.game_data.shutdown || window_closed { return; }
}
}
if data.recreate_pipeline {
if let Some(pipeline_ok) = create_pipeline(device.clone(), sub_pass.clone(), "shaders/triangle.vert", "shaders/triangle.frag", false) {
pipeline = pipeline_ok;
println!("Updated pipeline.");
} else {
println!("Failed to update pipeline.");
}
data.recreate_pipeline = false;
}
// Before we can draw on the output, we have to *acquire* an image from the swapchain. If
// no image is available (which happens if you submit draw commands too quickly), then the
// function will block.
// This operation returns the index of the image that we are allowed to draw upon.
//
// This function can block if no image is available. The parameter is an optional timeout
// after which the function call will return an error.
let (image_num, acquire_future) = match swapchain::acquire_next_image(swapchain.clone(), None) {
Ok(r) => r,
Err(AcquireError::OutOfDate) => {
recreate_swapchain = true;
continue;
},
Err(err) => panic!("{:?}", err)
};
game.update(&mut data);
let mut cbb = AutoCommandBufferBuilder::primary_one_time_submit(device.clone(), queue.family()).unwrap()
// Before we can draw, we have to *enter a render pass*. There are two methods to do
// this: `draw_inline` and `draw_secondary`. The latter is a bit more advanced and is
// not covered here.
.begin_render_pass(framebuffers[image_num].clone(), false, vec![[0.0, 0.0, 0.0, 1.0].into(), ClearValue::Depth(1.0)]).unwrap();
// We are now inside the first subpass of the render pass
for i in 0..data.game_objects.len() {
cbb = cbb.draw_indexed(pipeline.clone(), &dynamic_state,
data.meshes[data.game_objects[i].mesh_index].vertex_buffer.clone(),
data.meshes[data.game_objects[i].mesh_index].index_buffer.clone(),
(), data.push_constants.clone()).unwrap();
}
cbb = cbb.draw(line_pipeline.clone(), &dynamic_state, line_vertex_buffer.clone(), (), data.line_push_constants.clone()).unwrap()
// We leave the render pass by calling `draw_end`. Note that if we had multiple
// subpasses we could have called `next_inline` (or `next_secondary`) to jump to the
// next subpass.
.end_render_pass().unwrap();
let command_buffer = cbb.build().unwrap();
let future = previous_frame_end.join(acquire_future)
.then_execute(queue.clone(), command_buffer).unwrap()
.then_swapchain_present(queue.clone(), swapchain.clone(), image_num)
.then_signal_fence_and_flush();
match future {
Ok(future) => {
previous_frame_end = Box::new(future) as Box<_>;
}
Err(FlushError::OutOfDate) => {
recreate_swapchain = true;
previous_frame_end = Box::new(sync::now(device.clone())) as Box<_>;
}
Err(e) => {
println!("{:?}", e);
previous_frame_end = Box::new(sync::now(device.clone())) as Box<_>;
}
}
// Note that in more complex programs it is likely that one of `acquire_next_image`,
// `command_buffer::submit`, or `present` will block for some time. This happens when the
// GPU's queue is full and the driver has to wait until the GPU finished some work.
//
// Unfortunately the Vulkan API doesn't provide any way to not wait or to detect when a
// wait would happen. Blocking may be the desired behavior, but if you don't want to
// block you should spawn a separate thread dedicated to submissions.
events_loop.poll_events(|ev| {
game.on_window_event(&ev);
match ev {
Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => data.shutdown = true,
Event::WindowEvent { event: WindowEvent::Resized(_), .. } => recreate_swapchain = true,
_ => {}
}
});
if data.shutdown { return; }
pub fn upload_mesh(self: &mut Self, mesh: CPUMesh) -> usize {
let vertex_buffer = CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::vertex_buffer(), mesh.vertices.into_iter()).unwrap();
let index_buffer = CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::index_buffer(), mesh.indices.into_iter()).unwrap();
self.game_data.meshes.push(Mesh { vertex_buffer, index_buffer });
self.game_data.meshes.len() - 1
}
}
@@ -440,8 +472,10 @@ pub mod line_fs {
}
}
fn create_pipeline<T: RenderPassAbstract, V: vulkano::pipeline::vertex::Vertex>(device: Arc<Device>, sub_pass: Subpass<Arc<T>>, vertex_shader_path: &str, fragment_shader_path: &str, is_line: bool) -> Option<Arc<GraphicsPipeline<SingleBufferDefinition<V>, Box<dyn PipelineLayoutAbstract + Send + Sync>, Arc<T>>>> {
fn create_pipeline<V: vulkano::pipeline::vertex::Vertex>(device: Arc<Device>, render_pass: Arc<RenderPassAbstract + Send + Sync>, vertex_shader_path: &str, fragment_shader_path: &str, is_line: bool) -> Option<Arc<GraphicsPipelineAbstract + Send + Sync>> {
if let Some((shader, shader_data)) = read_shader(vertex_shader_path, fragment_shader_path) {
let sub_pass = Subpass::from(render_pass.clone(), 0).unwrap();
let vertex_shader_entry;
let fragment_shader_entry;
let vertex_shader_module;
@@ -520,55 +554,4 @@ fn read_shader(vert_path_relative: &str, frag_path_relative: &str) -> Option<(Co
return None;
}
}
}
fn load_mesh(device: Arc<Device>, mesh_path: &str) -> Vec<Mesh> {
struct TempVertex {
pos: Option<[f32; 3]>,
uv: Option<[f32; 2]>,
normal: Option<[f32; 3]>,
}
let file = collada::document::ColladaDocument::from_path(Path::new(mesh_path)).unwrap();
file.get_obj_set().unwrap().objects.iter().map(|model| {
let mut vertices: Vec<TempVertex> = model.vertices.iter().map(|v| {
TempVertex {
pos: Some([v.x as f32, v.y as f32, v.z as f32]),
uv: None,
normal: None
}
}).collect();
let mut indices = Vec::new();
model.geometry.iter().for_each(|geometry| geometry.mesh.iter().for_each(|primitive| {
if let collada::PrimitiveElement::Triangles(tris) = primitive {
tris.vertices.iter().for_each(|tri| {
[tri.0, tri.1, tri.2].iter().for_each(|(vertex_index, texture_position_index, normal_index)| {
indices.push(*vertex_index as u32);
vertices[*vertex_index].uv = texture_position_index.or(None).map(|tpi| {
let tex_vertex = model.tex_vertices[tpi];
[tex_vertex.x as f32, 1.0 - tex_vertex.y as f32]
});
vertices[*vertex_index].normal = normal_index.or(None).map(|ni| {
let normal = model.normals[ni];
[normal.x as f32, normal.y as f32, normal.z as f32]
});
});
});
} else {
panic!("Mesh format Polylist not supported!");
}
}));
let finished_vertices = vertices.iter().map(|v| Vertex {
position: v.pos.unwrap(),
uv: v.uv.unwrap(),
normal: v.normal.unwrap(),
});
let vertex_buffer = CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::vertex_buffer(), finished_vertices.into_iter()).unwrap();
let index_buffer = CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::index_buffer(), indices.into_iter()).unwrap();
Mesh { vertex_buffer, index_buffer }
}).collect()
}