This commit is contained in:
2019-07-22 18:12:06 +02:00
parent db009a9ce5
commit 7d50d00ab6
7 changed files with 218 additions and 98 deletions

View File

@@ -8,7 +8,9 @@ edition = "2018"
vulkano-shaders = "0.13"
vulkano = "0.13"
vulkano-win = "0.13"
shade_runner = "0.1.2"
shaderc = "0.5.0"
cgmath = "0.17"
image = "0.21"
winit = "0.19"
time = "0.1.37"
time = "0.1.37"

7
shaders/line.frag Normal file
View File

@@ -0,0 +1,7 @@
#version 450
layout(location = 0) out vec4 f_color;
void main() {
f_color = vec4(1.0, 0.0, 0.0, 1.0);
}

7
shaders/line.vert Normal file
View File

@@ -0,0 +1,7 @@
#version 450
layout(location = 0) in vec3 position;
void main() {
gl_Position = vec4(position, 1.0);
}

View File

@@ -3,5 +3,5 @@
layout(location = 0) out vec4 f_color;
void main() {
f_color = vec4(1.0, 0.0, 0.0, 1.0);
f_color = vec4(0.0, 1.0, 0.0, 1.0);
}

View File

@@ -1,7 +1,11 @@
#version 450
layout(location = 0) in vec2 position;
layout(location = 0) in vec3 position;
layout(push_constant) uniform push_constants {
float time;
} push;
void main() {
gl_Position = vec4(position, 0.0, 1.0);
gl_Position = vec4(position + vec3(sin(push.time / 10.), 0., 0.), 1.0);
}

View File

@@ -1,5 +1,47 @@
use crate::vulkan::{Vertex, GameData};
use winit::{DeviceId, KeyboardInput, ElementState, VirtualKeyCode};
use std::time::SystemTime;
mod vulkan;
impl GameData<'_> {
fn on_init(self: &Self) {
}
fn on_keyboard_event(self: &Self, _: DeviceId, input: KeyboardInput) {
if input.state == ElementState::Pressed && input.virtual_keycode == Some(VirtualKeyCode::F) {
println!("doot");
}
}
fn update_push_constants(self: &mut Self) {
self.push_constants.time = self.start_time.elapsed().unwrap().as_millis() as f32 / 1000.0;
}
}
#[derive(Debug, Clone, Copy)]
pub struct PushConstants {
pub time: f32
}
fn main() {
vulkan::init();
let mut pc = PushConstants {
time: 0.0
};
let data = GameData {
mesh_vertices: vec![
Vertex { position: [0.1, 0.2, 0.2] },
Vertex { position: [0.2, 0.4, 0.2] },
Vertex { position: [0.2, 0.2, 0.3] }
],
line_vertices: vec![
Vertex { position: [-1., 0., 0.] },
Vertex { position: [1., 0., 0.] },
],
push_constants: &mut pc,
start_time: SystemTime::now()
};
vulkan::init(data);
}

View File

@@ -4,7 +4,8 @@ use vulkano::device::{Device, DeviceExtensions};
use vulkano::framebuffer::{Framebuffer, FramebufferAbstract, Subpass, RenderPassAbstract};
use vulkano::image::SwapchainImage;
use vulkano::instance::{Instance, PhysicalDevice};
use vulkano::pipeline::GraphicsPipeline;
use vulkano::pipeline::{GraphicsPipeline};
use vulkano::pipeline::shader::{GraphicsShaderType, ShaderModule};
use vulkano::pipeline::viewport::Viewport;
use vulkano::swapchain::{AcquireError, PresentMode, SurfaceTransform, Swapchain, SwapchainCreationError};
use vulkano::swapchain;
@@ -16,39 +17,49 @@ use vulkano_win::VkSurfaceBuild;
use winit::{EventsLoop, Window, WindowBuilder, Event, WindowEvent};
use std::sync::Arc;
use std::time::SystemTime;
use std::path::PathBuf;
use std::ffi::CStr;
mod vs {
vulkano_shaders::shader!{
ty: "vertex",
path: "shaders/triangle.vert",
}
use shade_runner;
use shade_runner::{CompiledShaders, Entry};
use shaderc;
use vulkano::pipeline::vertex::SingleBufferDefinition;
use vulkano::descriptor::PipelineLayoutAbstract;
use crate::PushConstants;
const VALIDATION_LAYERS: &[&str] = &[
"VK_LAYER_LUNARG_standard_validation"
];
#[cfg(all(debug_assertions))]
const ENABLE_VALIDATION_LAYERS: bool = true;
#[cfg(not(debug_assertions))]
const ENABLE_VALIDATION_LAYERS: bool = false;
#[derive(Default, Debug, Clone)]
pub struct Vertex {
pub position: [f32; 3],
}
vulkano::impl_vertex!(Vertex, position);
pub struct GameData<'a> {
pub start_time: SystemTime,
pub mesh_vertices: Vec<Vertex>,
pub line_vertices: Vec<Vertex>,
pub push_constants: &'a mut PushConstants,
}
mod fs {
vulkano_shaders::shader!{
ty: "fragment",
path: "shaders/triangle.frag",
}
}
mod line_vs {
vulkano_shaders::shader!{
ty: "vertex",
path: "shaders/triangle.vert",
}
}
mod line_fs {
vulkano_shaders::shader!{
ty: "fragment",
path: "shaders/triangle.frag",
}
}
pub fn init() {
pub fn init(mut game: GameData) {
let instance = {
let extensions = vulkano_win::required_extensions();
Instance::new(None, &extensions, None).unwrap()
if ENABLE_VALIDATION_LAYERS {
Instance::new(None, &extensions, VALIDATION_LAYERS.iter().cloned()).expect("failed to create Vulkan instance")
} else {
Instance::new(None, &extensions, None).expect("failed to create Vulkan instance")
}
};
let physical = PhysicalDevice::enumerate(&instance).next().unwrap();
println!("Using device: {} (type: {:?})", physical.name(), physical.ty());
@@ -133,7 +144,7 @@ pub fn init() {
[dimensions.0, dimensions.1]
} else {
// The window no longer exists so exit the application.
return;
panic!("idk");
};
// Please take a look at the docs for the meaning of the parameters we didn't mention.
@@ -143,24 +154,8 @@ pub fn init() {
};
#[derive(Default, Debug, Clone)]
struct Vertex { position: [f32; 2] }
vulkano::impl_vertex!(Vertex, position);
// We now create a buffer that will store the shape of our triangle.
let vertex_buffer = {
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), [
Vertex { position: [-0.5, -0.25] },
Vertex { position: [0.0, 0.5] },
Vertex { position: [0.25, -0.1] }
].iter().cloned()).unwrap()
};
let line_vertex_buffer = {
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), [
Vertex { position: [-0.4, -0.3] },
Vertex { position: [0.01, 0.55] },
].iter().cloned()).unwrap()
};
let mesh_vertex_buffer = CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), game.mesh_vertices.iter().cloned()).unwrap();
let line_vertex_buffer = CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), game.mesh_vertices.iter().cloned()).unwrap();
// The next step is to create the shaders.
//
@@ -206,44 +201,38 @@ pub fn init() {
}
).unwrap());
let vs = vs::Shader::load(device.clone()).unwrap();
let fs = fs::Shader::load(device.clone()).unwrap();
let line_vs = line_vs::Shader::load(device.clone()).unwrap();
let line_fs = line_fs::Shader::load(device.clone()).unwrap();
let sub_pass = Subpass::from(render_pass.clone(), 0).unwrap();
// Before we draw we have to create what is called a pipeline. This is similar to an OpenGL
// program, but much more specific.
let pipeline = Arc::new(GraphicsPipeline::start()
// We need to indicate the layout of the vertices.
// The type `SingleBufferDefinition` actually contains a template parameter corresponding
// to the type of each vertex. But in this code it is automatically inferred.
.vertex_input_single_buffer()
// A Vulkan shader can in theory contain multiple entry points, so we have to specify
// which one. The `main` word of `main_entry_point` actually corresponds to the name of
// the entry point.
.vertex_shader(vs.main_entry_point(), ())
// The content of the vertex buffer describes a list of triangles.
.triangle_list()
// Use a resizable viewport set to draw over the entire window
.viewports_dynamic_scissors_irrelevant(1)
// See `vertex_shader`.
.fragment_shader(fs.main_entry_point(), ())
// We have to indicate which subpass of which render pass this pipeline is going to be used
// in. The pipeline will only be usable from this particular subpass.
.render_pass(sub_pass.clone())
// Now that our builder is filled, we call `build()` to obtain an actual pipeline.
.build(device.clone())
.unwrap());
let pipeline = create_pipeline(device.clone(), sub_pass.clone());
let line_shader_vertex_entry;
let line_shader_fragment_entry;
let line_shader_module_vertex;
let line_shader_module_fragment;
let (line_shader, line_shader_data) = read_shader("shaders/line.vert", "shaders/line.frag");
unsafe {
line_shader_module_vertex = ShaderModule::from_words(device.clone(), &line_shader.vertex).expect("Failed to load");
line_shader_vertex_entry = line_shader_module_vertex.graphics_entry_point(
CStr::from_bytes_with_nul_unchecked(b"main\0"),
line_shader_data.vert_input,
line_shader_data.vert_output,
line_shader_data.vert_layout,
GraphicsShaderType::Vertex);
line_shader_module_fragment = ShaderModule::from_words(device.clone(), &line_shader.fragment).expect("Failed to load");
line_shader_fragment_entry = line_shader_module_fragment.graphics_entry_point(
CStr::from_bytes_with_nul_unchecked(b"main\0"),
line_shader_data.frag_input,
line_shader_data.frag_output,
line_shader_data.frag_layout,
GraphicsShaderType::Fragment);
};
let line_pipeline = Arc::new(GraphicsPipeline::start()
.vertex_input_single_buffer()
.vertex_shader(line_vs.main_entry_point(), ())
.vertex_input_single_buffer::<Vertex>()
.vertex_shader(line_shader_vertex_entry.clone(), ())
.line_list()
.viewports_dynamic_scissors_irrelevant(1)
.fragment_shader(line_fs.main_entry_point(), ())
.fragment_shader(line_shader_fragment_entry.clone(), ())
.render_pass(sub_pass.clone())
.build(device.clone())
.unwrap());
@@ -258,10 +247,8 @@ pub fn init() {
// Since we need to draw to multiple images, we are going to create a different framebuffer for
// each image.
let mut framebuffers = window_size_dependent_setup(&images, render_pass.clone(), &mut dynamic_state);
// Initialization is finally finished!
// In some situations, the swapchain will become invalid by itself. This includes for example
// In some situations, the swapchain will become invalid by it This includes for example
// when the window is resized (as the images of the swapchain will no longer match the
// window's) or, on Android, when the application went to the background and goes back to the
// foreground.
@@ -333,6 +320,8 @@ pub fn init() {
// Specify the color to clear the framebuffer with i.e. blue
let clear_values = vec!([0.0, 0.0, 1.0, 1.0].into());
game.update_push_constants();
// In order to draw, we have to build a *command buffer*. The command buffer object holds
// the list of commands that are going to be executed.
//
@@ -350,23 +339,19 @@ pub fn init() {
// The third parameter builds the list of values to clear the attachments with. The API
// is similar to the list of attachments when building the framebuffers, except that
// only the attachments that use `load: Clear` appear in the list.
.begin_render_pass(framebuffers[image_num].clone(), false, clear_values)
.unwrap()
.begin_render_pass(framebuffers[image_num].clone(), false, clear_values).unwrap()
// We are now inside the first subpass of the render pass. We add a draw command.
//
// The last two parameters contain the list of resources to pass to the shaders.
// Since we used an `EmptyPipeline` object, the objects have to be `()`.
.draw(pipeline.clone(), &dynamic_state, vertex_buffer.clone(), (), ())
.unwrap()
.draw(line_pipeline.clone(), &dynamic_state, line_vertex_buffer.clone(), (), ())
.unwrap()
.draw(pipeline.clone(), &dynamic_state, mesh_vertex_buffer.clone(), (), game.push_constants.clone()).unwrap()
.draw(line_pipeline.clone(), &dynamic_state, line_vertex_buffer.clone(), (), ()).unwrap()
// We leave the render pass by calling `draw_end`. Note that if we had multiple
// subpasses we could have called `next_inline` (or `next_secondary`) to jump to the
// next subpass.
.end_render_pass()
.unwrap()
.end_render_pass().unwrap()
// Finish building the command buffer by calling `build`.
.build().unwrap();
@@ -412,7 +397,10 @@ pub fn init() {
match ev {
Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => done = true,
Event::WindowEvent { event: WindowEvent::Resized(_), .. } => recreate_swapchain = true,
_ => ()
Event::WindowEvent { event: WindowEvent::KeyboardInput { device_id, input }, .. } => {
game.on_keyboard_event(device_id, input);
}
_ => {}
}
});
if done { return; }
@@ -442,3 +430,73 @@ fn window_size_dependent_setup(
) as Arc<dyn FramebufferAbstract + Send + Sync>
}).collect::<Vec<_>>()
}
fn create_pipeline<T: RenderPassAbstract>(device: Arc<Device>, sub_pass: Subpass<Arc<T>>) -> Arc<GraphicsPipeline<SingleBufferDefinition<Vertex>, Box<PipelineLayoutAbstract + Send + Sync>, Arc<T>>> {
let mesh_shader_vertex_entry;
let mesh_shader_fragment_entry;
let mesh_shader_module_vertex;
let mesh_shader_module_fragment;
let (mesh_shader, mesh_shader_data) = read_shader("shaders/triangle.vert", "shaders/triangle.frag");
unsafe {
mesh_shader_module_vertex = ShaderModule::from_words(device.clone(), &mesh_shader.vertex).expect("Failed to load");
mesh_shader_vertex_entry = mesh_shader_module_vertex.graphics_entry_point(
CStr::from_bytes_with_nul_unchecked(b"main\0"),
mesh_shader_data.vert_input,
mesh_shader_data.vert_output,
mesh_shader_data.vert_layout,
GraphicsShaderType::Vertex);
mesh_shader_module_fragment = ShaderModule::from_words(device.clone(), &mesh_shader.fragment).expect("Failed to load");
mesh_shader_fragment_entry = mesh_shader_module_fragment.graphics_entry_point(
CStr::from_bytes_with_nul_unchecked(b"main\0"),
mesh_shader_data.frag_input,
mesh_shader_data.frag_output,
mesh_shader_data.frag_layout,
GraphicsShaderType::Fragment);
};
// Before we draw we have to create what is called a pipeline. This is similar to an OpenGL
// program, but much more specific.
let pipeline = Arc::new(GraphicsPipeline::start()
// We need to indicate the layout of the vertices.
.vertex_input_single_buffer::<Vertex>()
// A Vulkan shader can in theory contain multiple entry points, so we have to specify
// which one. The `main` word of `main_entry_point` actually corresponds to the name of
// the entry point.
.vertex_shader(mesh_shader_vertex_entry.clone(), ())
// The content of the vertex buffer describes a list of triangles.
.triangle_list()
// Use a resizable viewport set to draw over the entire window
.viewports_dynamic_scissors_irrelevant(1)
// See `vertex_shader`.
.fragment_shader(mesh_shader_fragment_entry.clone(), ())
// We have to indicate which subpass of which render pass this pipeline is going to be used
// in. The pipeline will only be usable from this particular subpass.
.render_pass(sub_pass.clone())
// Now that our builder is filled, we call `build()` to obtain an actual pipeline.
.build(device.clone())
.unwrap());
return pipeline;
}
fn read_shader(vert_path_relative: &str, frag_path_relative: &str) -> (CompiledShaders, Entry) {
let project_root = std::env::current_dir().expect("failed to get root directory");
let mut vert_path = project_root.clone();
vert_path.push(PathBuf::from(vert_path_relative));
let mut frag_path = project_root.clone();
frag_path.push(PathBuf::from(frag_path_relative));
let shader_result = shade_runner::load(vert_path, frag_path);
match shader_result {
Ok(shader) => {
let shader_data = shade_runner::parse(&shader).expect("Failed to parse");
return (shader, shader_data);
}
Err(shade_runner::error::Error::Compile(shade_runner::error::CompileError::Compile(shaderc::Error::CompilationError(line, error)))) => {
panic!("Shader line {}: {:?}", line, error);
}
Err(error) => panic!("Shader compilation error: {:?}", error)
}
}